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ABSTRACT

Work in the stabilization of monolithic Nd:YAG lasers and the
application of these lasers to nonlinear optical frequency conversion is
discussed. The intrinsic stability of semiconductor-diode-laser-pumped
solid-state lasers has facilitated a number of demonstrations in external
resonant cavity harmonic generation and stable optical parametric
oscillation. Relative laser frequency stabilization of 0.3 Hz has been
achieved, and absolute stability of a few hundred hertz is anticipated. The
challenge is now to reproduce this frequency stability in the output of
tunable nonlinear optical devices. Theoretical and experimental work
toward this goal are continuing.
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I Introduction

This progress report is presented in the form of two manuscripts that have been submitted
for publication. The first manuscript describes a presentation given in Vilnius, Lithuania in
August of 1990. Our work in the development and frequency stabilization of
semiconductor-diode-laser-pumped solid-state lasers was presented. Emphasis was placed
on research in nonlinear optical frequency conversion made possible through the use of
these lasers to generate pump radiation for the nonlinear optical devices. These lasers are
now being stabilized to better than one hertz relative to a high-finesse resonant cavity.
Preliminary demonstrations have shown the possibility absolute stabilization to a few
hundred hertz using sub-Doppler spectroscopy techniques with molecular absorptions in
iodine.

The second manuscript describes a theoretical analysis of the tuning properties of
monolithic doubly resonant optical parametric oscillators (DRO's). This paper will be
published in the March issue of the Journal of the Optical Society of America B. The
tuning properties of the DRO's are complicated, and stable operation requires that an
numbser of critical tolerances be met. Monlithic DRO's that we have operated have
displayed extremely good coherence properties, low thresholds (10 mW) for cw parametric
oscillation, and good conversion efficiency. The potential of optical parametric oscillators
for optical communication, remote sensing. spectroscopy, and even projection displays is
extensive. This potential for application proves the motivation for stabilizing the DRO.

We are currently pursuing a number of projects in these areas. Work on both
improved relative laser frequency stabilization and absolute stabilization is continuing. The
single-mode output-power of our injection-locked Nd:YAG laser has recently been
upgraded to 18 W, and cw harmonic generation has be demonstrated at 6.5-W power
levels. This is adequate power to pump even a single resonant optical parametric oscillator.
In addition we will be studying cascaded harmonic generation to the ultraviolet and a
number of additional DRO and SRO schemes.
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Abstract

Semiconductor-diode-laser-pumped solid-state lasers are inherently frequency
stable when compared with other lasers, and this stability can be improved by
active feedback control. Monolithic nonplanar ring oscillators constructed from
solid pieces of the laser material provide better than 10-kHz frequency stability
over 0.1-sec intervals. Active feedback stabilization of the cavity length has been
used to demonstrate 0.3-Hz stabilization relative to a reference cavity resonance
frequency. This range of frequency stability has application in nonlinear optical
frequency conversion.

Resonantly enhanced nonlinear frequency conversion techniques, such as external-resonant-
cavity harmonic generation and optical parametric oscillation, are particularly sensitive to the
frequency stability of the pump radiation. High stability diode-laser-pumped solid-state lasers
permit efficient cw second-harmonic generation (SHG) and optical parametric oscillation (OPO).
An interesting aspect of this work is an analysis of the conditions required to produce single-
mode-pair optical parametric oscillation. The exceptional frequency stability of the diode-pumped
NonPlanar Ring Oscillator (NPRO) compared to dye lasers, gas lasers, or semiconductor lasers
also provides some unique advantages for active frequency stabilization. Sub-Hertz relative
frequency stability has been achieved by locking to reference cavities, and absolute stability of a
few hundred Hz by locking to molecular or atomic absorptions appears possible.

Remeasurement of some nonlinear optical coefficients is a by-product that grew out of this
work when it was found that some of the accepted values were predicting results that were
inconsistent with experimental observations.

1. The NonPlanar Ring Oscillator

The solid-state monolithic NPRO!:2:3 generates stable single-axial-mode output which is
important for resonant cavity nonlinear optical frequency conversion. Semiconductor-diode-laser
pumping of the NPRO's#2 provides advantages of efficiency and reduced heat loading. In
addition, the low amplitude fluctuations of the diode-laser pump source provide improved
frequency stability. '

" A schematic illustration of a NPRO is shown in Fig. 1. Spatial hole burning in the popula-
tion inversion is avoided by unidirectional oscillation in a ring cavity which is important for single
frequency oscillation. The monolithic cavity non-planar path includes three total internal
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Fig. 1. Semiconductor-diode-laser-pumped Non-Planar Ring
Oscillator (NPRO).

reflections and a fourth reflection at non-normal incidence from a multilayer-dielectric-coated
curved output coupler. The total internal reflections provide reciprocal polarization rotation, and
non-reciprocal rotation is produced by Faraday rotation when the laser material is placed in a
magnetic field. The result is four nearly degenerate modes, two for the different eigen
polarizations in each direction of oscillation. One of the four modes will have minimum loss.?
Relatively small loss differences result in single-mode unidirectional laser oscillation. Designs
~ have been produced that maximize loss difference to increase the resistance to optical feedback, an
effect that can reduce frequency stability.’

The beatnote linewidth of monolithic Nd:YAG (neodymium-doped yttrium aluminum
gamnet) and Nd:GGG (neodymium-doped gadolinium gallium garnet) lasers has been observed to
be between 3 kHz and 10 kHz for short periods of time, typically 100 ms.54.7 Over longer
periods of time the frequency drifts through greater excursions due to the temperature tuning rate
which is -3.1 GHz/°C for monolithic Nd:YAG oscillators. Temperature fluctuations in the
millidegree range produce a frequency wander of several MHz. Short term stability of a few kHz
and MHz stability over periods of minutes, however, is adequate for a number of resonant cavity
nonlinear frequency conversion demonstrations. And long term experiments can be carried out
when the laser is slaved to the nonlinear cavity by active frequency control. The temperature
sensitivity can be used for tuning, but the response is slow, typically 1 sec. Piezoclectric crystals
bonded directly to non optical surfaces of the monolithic lasers provide limited tuning range but
much faster response extending to frequencies of hundreds of kHz.8.9 A split servo with
feedback to both the temperature and the piezoelectric crystal can have both narrow jitter linewidth
and long term frequency control.

2. Pulsed Applications

Pulsed pumping of monolithic lasers usually results in a frequency chirp during laser output
caused by heating. Continuously pumped lasers reach a steady-state condition with constant
temperature. However, the continuous wave output can be used to injection seed high-power
pulsed lasers, or the cw laser output can be time gated and amplified. Another way in which



stable-frequency, pulsed operation is obtained from the monolithic lasers is by applying a small
amount of modulation to the pump radiation at the relaxation oscillation frequency to produce
spiking in the laser output. Each of these methods has been used to generate pulsed pump
radiation for optical parametric oscillators, and the results of these investigations provide a
heuristic review of the requirement for achieving single mode-pair oscillation of OPO's.

a. Injection seeded Q-switched laser operation

High-power Q-switched lasers have been a traditional source of pump radiation for singly
resonant OPO's (SRO's). The short buildup times and high gain of the Q-switched lasers usually
result in highly multimode output. If the oscillation of one mode is injection seeded with a few
mW of cw radiation, oscillation on that laser mode can buildup and deplete the population
inversion before other laser modes have a chance to grow to significant levels. Several
commercial lasers are available that offer injection-seeded operation with nearly time-bandwidth-
limited output of typically 10-nsec duration.

SRO's have been forced to operate resonated, single-mode signal even with highly
multimode pumping.1® The combined frequency selection of phase matching, a dispersing
grating, and an intracavity etalon were necessary. The multi-axial-mode pump resulted in a
multimode output at the nonresonated idler field. When this type of frequency control is used
with a pulse SRO pumped with an injection-seeded Q-switched laser, the result is single-mode
output at both the signal and idler wavelengths.!! With the addition of piezoelectric control of the
cavity length and computer control of all the adjustable parameters, spectrographic measurements
with 300-MHz resolution were possible.12 These SRO's used angle tuned LiNbO; pumped at
1.06 pm.

The single-mode pump alone is not sufficient to produce single-mode-pair oscillation in a
simple SRO with no frequency selection except that of phase matching. This was observed in a
BaB,0, SRO pumped with the 354-nm third harmonic of the output of an injection seeded Q-
switched Nd: YAG laser.!3 The single frequency pump did reduce OPO output energy fluctuation
to 10% from 30% which was observed with multimode pumping when injection seeding of the Q-
switched laser was blocked. The plane-parallel-cavity SRO with 1.2-cm-long BaB,0, crystal and
3.cm overall length pumped by a 6-nsec pulse would oscillate on typically 8 axial modes at the
signal wave. The broad tuning range of the BaB,O,4 OPO extending from 412 nm to 2.55 pm
included both the 1.064-um fundamental and 532-nm second harmonic of the laser, which were
available for injection seeding the SRO. With seeding, the buildup time of the SRO oscillation
was substantially decreased, and single-mode-pair oscillated was achieved. Measurements of the
SRO threshold yielded values that were less than predicted from calculations based on reported
values of the nonlinear coefficient of BaB,0O,. This lead to a reassessment of the scale for optical
nonlinear coefficients. '

b. Nonlinear optical coefficient measurements
The injection-seeded spatially-filtered Q-switched Nd:YAG laser provided a suitable pump for
phase-matched second-harmonic measurements of the nonlinear optical coefficient. High optical



quality in both the pump beam and the nonlinear material is needed for precise control of phase
matching which is also a requirement of these measurements. The measurements included careful
characterization of phase matching for each observation. In addition it was determined that there
were no extraneous spatial, temporal, or spectral components of the pump.

The results of careful nonlinear optical coefficient measurementsi4 are reproduced in
Table I. The investigation, which at first was motivated by the BaB,O4 SRO results, grew to
include a total of six materials. This was necessary because the earlier BaB,0, measurements
were relative to KDP, and a controversy exists over the value of the nonlinear coefficient of that
material. The measurements described here were performed in a two-beam setup which permitted
both relative measurements between two crystal and absolute measurements with harmonic power
measured in one beam and fundamental power measured in the other. The reproducibility of these
measurements was £4% which should also be the relative accuracy. The absolute accuracy is
estimated to be better than £10%.

The KDP coefficient listed in Table I
agrees within experimental error with other

phase-matched harmonic measurements.!5 The TABLE 1

coefficients tabulated here yield a ratio NONLINEAR OPTICAL COEFFICIENTS

dy,(BaB,0,)/d,(KDP) of 5.8 at variance with = '

the ratio of 4.1 reported earlier. The absolute Nonlinear optical
. Crystal . a)

value for the BaB,O, coefficient, however, coefficientf

more closely agrees with the SRO threshold (1012 myV)

observations. A more significant variance is

: : : KDP dys = 0.38
with earlier parametric fluorescence
measurement of LilO, for which the nonlinear KD*P d3s = 0.37
coefficient was 1.73 times the value reported LilO,y dy, = -4.1
here. Relative measurements between KDP and 5%MgO:LiNbO, dy = - 4.7
LilO,, however, are in agreement with earlicr BaB,0, dy = 1.96
results. The difference between the Iyl = 220
previously reported nonlinear coefficient of 2
KTP and that reported here is even larger: d ¢ = KTP degg = 3.18
7.3 pm/V reported carlier compared to 3.18 ldysl = 2.6
pmy/V reported here. It is possible that some of Idygl = 3.3
these differences are due to sample to sample
variations of the.maferials. Confirmation will (a) Tm gg‘:ﬁ“:cg:‘hﬁ;szf
come from application of these values. The generation.
highly coherent laser output that is becoming (b) Assumes that ldy)| << | for BaB,0,.
routinely available from diode-pumped solid- © Zimaﬁd W}:;mgm: slazzneas?; ?ssummg

state lasers allows greater precision in the
determination of nonlinear optical coefficients.



c. Long-pulse-pumped SROs

Greater frequency selection is possible with longer buildup times to parametric oscillation. Pump
pulses of 500-nsec duration were derived from a diode-pumped NPRO by gating the cw output
followed by multipass amplification in a flashlamp pumped laser amplifier.1® A monolithic SRO
was pumped by the second harmonic generated by the oscillator-amplifier laser system. Pumping
with the 532-nm harmonic allowed noncritical phase matching in the 5%MgO:LiNbO, crystal.
The purpose of this experiment was to investigate spectral narrowing and to reduce OPO
threshold to a level approaching that which could be achieved directly by diode-pumped lasers.

The monolithic SRO tuned from 834 to 958 nm and 1.47 to 1.2 um when temperature was
adjusted between 190° and 125°C.!7 Damage limitation of the MgO:LiNbO, SHG crystal
required that the 5-kW output of the laser amplifier be no longer than 500 ns. Under these
conditions 800 W of 532-nm harmonic was generated. The ring-cavity configuration of the SRO
allowed high efficiency; up to 60% pump depletion was observed after threshold was reached.
About 20% of the time single-mode operation of the SRO was observed. More often, however,
simultaneous oscillation on three axial modes was observed, and occasionally as many as 8
modes oscillated simultaneously. Thus long-buildup time alone was not sufficient to guarantee
single-mode oscillation.

d. Doubly resonant optical parametric oscillation.

A further reduction in OPO threshold is obtained with the doubly resonant oscillator (DRO)
configuration in which the OPO is resonant at both the signal and idler wavelengths. The added
constraint of double resonance in addition to phase matching and conservation of energy,
however, makes stable operation of the DRO difficult.!8 The frequency stability of the NPRO
and the mechanical stability of monolithic DRO construction are useful in overcoming this
difficulty. A doubly resonant monolithic DRO was constructed from MgO:LiNbO, with broad-
band dielectric mirrors highly reflecting near 1.06 um coated on the crystal.1 A ring geometry
was formed by using reflections from two 10-mm radius-of curvature surfaces on the ends of the
noncritically phase-matched, 1.25-cm-long crystal and a polished flat on one side for total internal
reflection. The DRO was pumped at 532 nm by second-harmonic pulses generated from the
relaxation oscillations of a Nd:YAG NPRO. Pulsed operation was required because the DRO
threshold was marginally higher than could be produced by the NPRO and harmonic generator
when operated cw.

A 10% modulation of the diode-laser current at 325 kHz drove the Nd:YAG NPRO into
relaxation oscillations. The 1.06-um fundamental pulses had 260-mW peak power and were
efficiently converted into 400-ns, 230-mW, 532-nm pulses by externally resonant second-
harmonic generation. The buildup of parametric oscillation occupied most of the pump pulse
duration. Overall DRO efficiency was only 7% due to the long buildup time. After threshold was
reached 60% pump depletion occurred. The DRO tuned between 1.02 and 1.12 pm by
adjustment of both temperature and electric field. The most remarkable aspect of the DRO
operation was that single-mode-pair oscillation was achieved on almost every pulse. The only



exception was when the DRO was tuned between cluster centers and either simultaneous or
alternating output on widely spaced modes approximately 4 nm apart were observed. The
monolithic DRO with a pulsed single-mode pump will oscillate on a single mode pair due to the
constraint of double cavity resonance.

3. cw Applications

Continuous wave operation is important for narrow-bandwidth nonlinear optical frequency
conversion. Transient conditions can be avoided with cw operation; even the time-bandwidth
limitations of the pulsed applications described above exceed the short term frequency stability of
diode-pumped solid-state lasers. Resonant-cavity techniques allow high-efficiency nonlinear
optical frequency conversion at the power levels available from frequency stabilized diode-
pumped solid-state lasers. The use of resonant cavities external to the the lasers simplifies the
operation of the laser, but the laser and external cavity resonances must be locked together. Stable
and efficient second-harmonic generation has been achieved with feedback control of the cavity
resonance, and it should be possible to stabilize optical parametric oscillation with similar
techniques.

a. External resonant cavity harmonic generation

The use of resonant-cavity harmonic generation external to the laser20 allows the problems of
laser stabilization and harmonic generation to be treated independently while high conversion
efficiency is maintained. Second harmonic generation with only the fundamental resonated has
been demonstrated using diode-pumped solid-state lasers.2l It is possible to resonate both
fundamental and harmonic,22 but with double resonance care is required to preserve the phase
relationship between fundamental and harmonic.23 There are several methods that can be used to
lock the fundamental frequency and the harmonic-generation resonant cavity. One of the simplest
is the dither and lock technique. On resonance the reflected fundamental power is minimum. The
optical length of the cavity can be modulated using either electro-optical or piezoelectric techniques
or the frequency of the fundamental radiation can be modulated. An error signal is developed
using phase sensitive detection of the reflected fundamental power. Using this technique,
Kozlovsky, et al.2! were able to generate 29.6 mW of cw 532-nm radiation from 56 mW of
incident fundamental in a monolithic externally-resonant MgO:LiNbO, harmonic generator.

b. cw pumped DRO

A second monolithic MgO:LiNbO,; DRO with higher finesse was prepared which could be
pumped with the available cw 532-nm radiation.# This OPO had an observed cw threshold of 12
mW, and single-mode-pair oscillation was again observed. Temperature and electric-field tuning
were used to tune the output from 1007 to 1129 nm. Dither and lock techniques were used to
stabilize the DRO on a single mode-pair but only with limited success. The DRO would track
frequency tuning of the pump for about 90 MHz. Pump depletion of 78% was observed at two
times above threshold.



Measurements of the coherence properties2S of this DRO demonstrated that the coherence of
the pump was reproduced in the DRO output with little additional frequency noise. Furthermore,
the sum of the phases of the signal and idler followed the phase of the pump. At degeneracy the
DRO output was locked in phase with the pump laser output. It was not possible to use active
control to stabilize the DRO for these measurements, perhaps due to shielding effects caused by
trapped charges in the MgO:LiNbO;. Instead, the DRO was temperature stabilized. It could be
operated for 20 minutes at degeneracy and for about one minute on a mode-pair off degeneracy
without a mode hop; this is long enough for measurements of coherence and to indicate the
potential for active stabilization.

c. Injection locking.

The use of a low power frequency-stabilized oscillator to stabilize the output of a higher power
oscillator is an established technique. When injecting the low-power master laser output into the
higher power slave laser, it is necessary to isolate the master from optical feedback, provide
spatial mode matching, and to lock the resonances of the master and slave lasers. High-power,
diode-pumped lasers are in the developmental stage, but injection locking has been demonstrated
on a hybrid system with a diode-pump laser used to lock the output of an arc-lamp-pumped, high-
power laser.26 Ring geometry was used in the high-power laser to reduced optical feedback and
avoided spatial hole burning effects. Locking of the cavities was achieved by the FM-sideband
technique which provided an error signal used to drive mirrors mounted on piezoelectric
translators and control the cavity length of the slave oscillator. It was possible to maintain
injection locking for a slave-to-master power ratio of 400:1 with a 13-W, single-frequency output.
Analysis of phase noise showed the total additional rms phase noise of the slave over that present
on the master oscillator was less than 0.3 radians. The measurement was limited by low-
frequency laboratory acoustics. As the cost of semiconductor diode lasers decreases with
advances in production, diode-pumped, high-power, solid-state lasers will become common.2’ A
diode-pumped slave laser is expected to be much less noisy due to the more stable pumping
provided by diode lasers, higher efficiency and therefore less heating, and the elimination of
turbulent coolant flow. Such all-solid-state lasers are good candidates to scale the output of
frequency stabilized lasers to higher powers.

4. Nd:YAG Laser Frequency Stabilization

It may be helpful to begin the discussion of frequency stabilization with the definition of terms
and a mathematical overview. The specification of frequency noise uses quantities such as
spectral bandwidth, linear spectral noise density, and Allen variance. It is often not possible to
compare the laser to a more stable standard, and it becomes necessary compare two lasers with
approximately the same level of frequency stability. If the two lasers are completely independent,
the bandwidth of the difference frequency generated when the two laser outputs interfere at a
photodetector, the heterodyne signal, sets an upper limit on the individual laser bandwidths. If
the two lasers are not completely independent in such a comparison, it is possible that there will
be some common mode rejection, that is some frequency noise will be identical in the two lasers



and not be evident in the heterodyne signal. Other measurements such as those derived from the
signals used to stabilize a laser provide information on the lower bound of noise. Measurement
by several different techniques reduce these uncertainties.

The spectral bandwidth is the frequency width that would be observed using a scanning
interferometer with sufficiently narrow transmission band. The heterodyne signal of the laser
output and a much more stable reference displaced from the laser output by a small frequency
difference translates the laser spectral distribution to a region in which it can be measured by
radio-frequency spectral analysis. Mathematically the bandwidth Afpyny is the full width at half
maximum of the power spectrum,

W) = SEOEP, M

where E(f) is defined by the Fourier transform
7

E() = lim —I-J.E(t) e s 2)
T 5o ﬁ T

The normalization of Eq. (2) is useful for ergodic processes. An ergotic process is one for which
the time average is equal to the ensemble average. With this normalization, the power spectrum of
an ergodic process will approach a constant distribution as the sample time T increases.

The time dependent electric field of a phase modulated output can be expressed as
E@ = E_exp(—i[2xft + ¢®]), 3)
where §(¢) is a time dependent phase and f, is a fixed frequency. A phase noise can be
represented by ¢(z). The instantaneous frequency shift is given by
AR = ¢ /27 . €Y

A complex spectral amplitude of frequency noise is obtained from the Fourier transform
T2

s =— |2 ar, )

where T is the duration of the sample. The linear spectral density of frequency noise is obtained
by averaging the absolute value of the spectral amplitude over many samples

s = {s* s} Q)

The units of S(f) are Hz/ J Hz. One method of measuring S(f) is radio frequency analysis of a
frequency discriminant signal, for example a voltage proportional to the instantaneous frequency
shift of the laser output.



The Schawlow-Townes limit describes the noise due only to the random addition of
spontaneous emission to the laser oscillation. The bandwidth of frequency noise in this limit is

Mgy = 2 TAV RV, /P, ™

where Av, is the width of the laser cavity resonance, h is Planck’s constant, V is the frequency of
the laser oscillation, and P is the output power of the laser. The linear spectral density of
frequency noise in the Schawlow-Townes limit is constant in frequency and given by

Sf,O =Avc,’2hvl/P, 8)

The condition (Sf,0)2 << B where B is the bandwidth of the noise applies, and it is appropriate to
use the relationship2®

Mo = T Se0- ©

Another measure of frequency stability is the two sample variance
M=1

2r) = —y.)? 10
o¥(z) 2(M—1),z="1(y"” y) (10)

Here y; is the i th frequency measurement of M successive measurements each of duration 7. A
division of the two sample variance by the frequency of the oscillation yields the Allen variance. 2
In practice the two-sample variance can be measured using the heterodyne signal obtained from
two lasers slightly offset in frequency. A time and interval counter can be used to measure zero
crossings of the heterodyne signal in successive time intervals. One data set can be manipulated
mathematically to yield the variance as a function of individual measurement duration.

a. Laser stabilization loop

The control loop for laser stabilization can be modeled as four elements: the laser oscillator which
is perturbed by a noise process S; )., » a discriminator that monitors the frequency fluctuations
with a voltage responsivity D, in units of V/Hz, a servo that amplifies the error signal with a gain
G, and an actuator that converts the amplified error signal to changes in laser frequency with the
coefficient K in units of Hz/V. Any stage may limit stabilization, but the discriminator is
particularly susceptible to noise in the optical signal and technical noise such as length fluctuations
of the reference cavity.

Diode-pumped, solid-state, monolithic lasers usually operate at the Schawlow-Townes limit
of frequency stability above 50 kHz, and exhibit a noise roughly proportional to 1/f below that
frequency. A piezoelectric crystal can be bonded to the monolithic laser oscillator to serve as the
frequency actuator. A typical response coefficient for this type of actuator is K = 1 MHz/V with a
+20-MHz dynamic range and bandwidths flat to 200 kHz. Slower control of laser frequency with
much larger range is achieved by temperature tuning. The servo has large gain at low
frequencies, typically 120 dB, to control the large 1/f noise and unity gain in the 50- to 100-kHz



region. The discriminator technique that will be described here is called Pound-Drever3? locking,
which uses the reflection of a frequency-modulated signal from a reference cavity. Ideally the
linear spectral density of frequency noise Sf'cl under closed-loop conditions would be reduced
from the free running value for the laser by

f,laser

l1+xGp, 1’

St (11)

where K is the actuator response coefficient, S is the servo gain, and D, is the discriminator
voltage responsivity. If stabilization is limited by noise in the frequency discriminant, the
minimum linear spectral noise density will be
S ..
f,disc
Stelmin = D (12)

v

b. Frequency discriminant

Resonant cavities can be used for a stabilization reference both in transmission and reflection.
The frequency modulation technique using reflection proposed by Drever, et. al 30 has several
advantages over locking to the side of a cavity transmission band. A frequency modulation is
applied to the laser output before it is incident on the reference cavity. The modulation frequency
is typically 10 MHz or greater. The FM side bands are separated from the carrier by the
modulation frequency which is greater than the optical bandwidth of the reference cavity. If the
carrier is centered on the resonance it will be at a minimum of reflection, and if the carrier is
slightly detuned from resonance, the amplitude of its reflection will grow, and it will be shifted in
phase by an amount dependent on the detuning. The FM sidebands, however, will be well
separated from the cavity resonance and therefore be nearly totally reflected with no phase change.
The reflected light has a resulting amplitude modulation which is dependent in magnitude and sign
of the degree of detuning of the carrier. The modulation frequency of the AM signal is the same
as that of the FM.

In the simplest analysis an FM signal can be approximated by a carrier and two sidebands

sin{at +a + Bsin(a f +7)}

= sin(e ¢t + @) + f‘sin[(w°+a)m)t +a+f] + sin[(® - )+a-B+n] . (13)

Note that the sum of the phases of the two sidebands differs by # from twice the phase of the
carrier. A similar expansion illustrates that the sum of the phases of AM sidebands is exactly
twice the phase of the carrier. More accurately the FM signal is represented by a series with
Bessel function coefficients



expli(ot +Bsinwt)) =

ikw_ t ik t iot
[B) + X 0Br{e = +nfe” ™}l ™. (14)
k=1
The complex reflection coefficient of the resonator is

r - rze‘jew)
R (&) =

l—rlrze

[64) (15)

where r; and r, are the field reflection coefficients of the first and second mirrors respectively and
the cavity round trip phase shift is given by &(Af) = 27 Af/ Afgsg Where Afgsr is the free
spectral range of the reference cavity. Eq. (15) assumes there are no losses in the cavity. If r) =
ry=r, and Af is small compared to Afgsg, then

—-i 6(Af) -i 2FAf
R = == y (16)
(Af) 1 2 A'fFSR

=-r

where ¥ is the finesse of the resonator. If the reflectivity given by (16) is assigned to the carrier
of (13) and the two side bands are assigned unity reflectivity, the total reflected intensity is
obtained by taking the square of the absolute value of the amplitude. Only the term that is
intensity modulated at angular frequency @_ is kept, and this result is normalized by dividing by
the average value of the incident intensity to yield the normalized error signal

Ir(wm)

VNor = T = (4BF Af/ AfFSR )sin@ . a7n

1

This result is in agreement with a more detailed derivation3! that treats a single Fourier component
of frequency noise rather than a fixed frequency offset and uses Eqs. (14) and (15) in the
expansion. The detailed derivation uses an incident field that is modulated at two frequencies

E = Eexpli(og +asinag +Bsina )}, (18)

with the conditions that @, >> @, >> @y and a<<1. The normalized signal is

. 2
sinc (/G )
Vior = o— 1. B) 1,8 ; x’z‘/ afycos(@g+g)sinar, (19
AfFSR 1+ G7sin (xN/G)
2
where x = ki G =2F/x, and tan¢ = -G tan(xy/G). The added detail of Eq.

Mpsg : :
gives information about the frequency response of the frequency discriminant. Bandwidth,
frequency dependent phase shift, and optimum value for the depth of modulation B=1.08 are

specified by this equation.
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The FM stabilization technique offers several advantages over the ransmission method of
stabilization. The error signal for the FM technique is at a frequency well above the frequency of
excess noise amplitude fluctuations of the laser over the shot noise limit, thus preventing these
amplitude fluctuations from being interpreted as frequency noise. Also the FM technique does not
have loop delays due to resonance buildup time, and it has a slightly greater sensitivity to
frequency change than the transmission method.

c. Laser frequency noise

It is important to characterize the spectral density of frequency noise of the laser for the purpose of
determining design parameters of the control loop. The frequency discriminant is useful for this
measurement. Calibration of the frequency discriminant was performed by directing the laser
output through an acousto-optic modulator in addition to the electro-optical modulator that was
introducing the 10-MHz FM sidebands. The frequency of the acousto-optic modulator was in
turn modulated with a low frequency sinusoidal input. The fixed frequency offset of the deflected
beam had no consequence, but the varying component served as a calibrated frequency noise
signal. The total modulation of the laser output was as described in Eq. (18). The measurement
of laser spectral noise density was performed under closed loop conditions, and the laser noise
was deconvolved with knowledge of the characteristics of the loop components. This
measurement was performed using a 40-mW commercial Nd:YAG NPRO. The results3! are
shown in Fig. 2. Similar results have been obtained with various techniques such as Fourier
analysis of time domain measurements, fiber delay measurements,32 and cavity transmission
measurements.33

The spectral noise density of the Nd:YAG
NPRO has a strong 1/f dependence decreasing to 3
a constant value at approximately 50 kHz. The
white noise above 50 kHz is approximately four
times the calculated Schawlow-Townes limit of
0.05 Hz /J_H; . The observed noise density a: 1
kHz is 20 Hz /Jﬁz- Corresponding values at
this frequency are typically 103 Hz/ Hz for dye
lasers and nearly 104 Hz /JH_z for Argon ion
lasers. The noise of the NPRO appears largely
due to fluctuations in the output of the diode
pump laser used for pumping. This is .:j
substantiated by numerical modeling which e — .
shows that white noise in the diode-laser output 10 10 10 10 10
would transfer to the spectral noise density with Frequency (Hz)
the same frequency dependence observed. If the Fjg 2. Measured NPRO linear spectral density
diode laser noise were reduced to the shot noise of frequency noise (data points) compared to the
limit, the numerical calculation indicates that the modeled frequency d"P‘mfm pump with a
spectral noise density of the NPRO would white noise componeat (so )

S jaser Hz/VHz)




decrease to 20 Hz /JHz J at DC. The low noise and potential for further noise reduction make the
NPRO an excellent laser for frequency stabilization.

d. Frequency stabilization of the NPRO

The FM-stabilization or Pound-Drever technique was used to stabilize two identical NPRO lasers.
The lasers were locked to adjacent fringes of a Fabry-Perot cavity with a finesse of ¥ = 22,000
and a free spectral range of Afpgg = 6.327 GHz. The frequency separation resulting from the use
of adjacent fringes allowed independent stabilization of the two lasers relative to the same
reference cavity. In this measurement34 .35 the two lasers were constructed from Nd:GGG
which has a higher Verdet constant than Nd: YAG. The higher Verdet constant provided greater
loss difference of the lasers modes and therefore higher resistance to optical feedback.

The experimental setup for the stabilization of the two lasers is shown in Fig. 3. The FM
frequencies imposed by the two electro-optical modulators EO1 and EO2 were 10.9 and 20.3
MHz respectively. The two laser beams were combined at the beamsplitter (BS). One of the
beams from the beamsplitter was incident on a fast photodiode (D1) used to observe the beating of
the laser outputs at 6.327 GHz. This signal was mixed down to 20 kHz with a precision RF
oscillator and analyzed with an audio spectrum analyzer. The second combined beam from the
beamsplitter was transmitted through a polarizing beamsplitter (PBS), a quarter wave plate (A/4),
and a mode-matching lens (L1), then reflected from the reference cavity back through the lens and
waveplate to the polarizing beam splitter where it was reflected to a second photodiode (D2). The
signal from the photodiode was mixed with the 10.9- and 20.3-MHz signals from oscillators f;
and f,. The signals from the mixers were sent through respective low pass filters and amplified in
the servos, and finally applied to the actuators piezoelectric crystals on the lasers. The actuator
response was K = 450 kHz/V with a bandwidth of 500 kHz and a 20-MHz dynamic range. The
servos had 125-dB gain at DC and unity gain at 100 kHz. The discriminant response was 04
V/MHz.

spectrum
analyzer

Fig. 3. Schematic diagram of dual-laser locking system.
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Fig. 4. Radio-frequency spectral analysis of heterodyne beat note
between two stabilized NPRO's.

The beatnote bandwidth observed with the spectrum analyzer was 2.9 Hz (Fig. 4).
Sampling times of 1.6 sec were used. Two-sample-variance measurements were also performed
on the heterodyne signal from the two lasers (Fig. 5). The two-sample variance decreases with
increased sample duration as typical of white noise until a minimum of 4.3 Hz was reached for 7
= 0.2 sec. The increase after the minimum is typical of long-term drift. An analysis of the shot-
noise limit of the discriminant signal shows that each laser has a theoretical noise bandwidth of
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Fig. 5. Two-sample root variance of heterodyne beat note between
two stabilized NPRO's.



2.2 Hz. All three of these values, 2.9-Hz beatnote, 4.3-Hz minimum two-sample variance, and
calculated 2.2-Hz shot-noise-limited laser bandwidth are in reasonable agreement.

In a subsequent experiment3! the heterodyne beatnote linewidth was reduced to 0.33 Hz.
The main factor allowing this was an increase in laser output power. The 2-mW Nd:GGG lasers
were replace with 40-mW Nd:YAG NPRO lasers. The increased power and increased sensitivity
of the Nd:YAG lasers to feedback made additional isolation necessary. An acousto-optic
modulator was used to shift the frequency of the lasers before reflection from the reference cavity.
This in combination with the polarizing beam splitter and quarter wave plate provided the required
degree of optical isolation. The increased power lowered the theoretical bandwidth due to shot
noise to 21 mHz. However, another limit to stabilization had been reached. This limit appears to
be mechanical or acoustic noise in the reference cavity. The excess noise of the reference cavity
will change the free spectral range as well as the frequency of the resonances.

The work described above is on relative stabilization of the laser frequency. The absolute
stabilization is only as good as that of the reference cavity. Work is continuing to isolate the
reference interferometer from laboratory noise and to achieve stabilization with narrower reference
cavity resonances. The necessity for stabilization of the reference cavity is well known.36
Absolute stabilization of Nd:YAG lasers is possible by locking to atomic or molecular
absorptions.3” He-Ne lasers have been stabilized to 50-mHz levels.36 Solid-state lasers have
many properties important for frequency stable operation and may eventually be stabilized as well
or better than He-Ne lasers.

5. Conclusion

Diode-pumped monolithic solid-state lasers have intrinsically narrow linewidths. The nonplanar
ring geometry offers advantages of high-power, unidirectional, single-mode operation and greater
resistance to optical feedback. The laser frequency can be tuned either slowly by temperature or
rapidly with contacted piezoelectric transducers. These lasers have been used in applications of
injection seeding high-peak-power pulsed lasers and injection locking high-power cw lasers. The
improved coherence is important in nonlinear-optical frequency conversion. Stable externally
resonant second-harmonic generation has been achieved using these lasers for the generation of
pump radiation. The low-noise free-running NPRO lasers has been useful in pumping optical
parametric oscillators allowing developments that were difficult or impossible in the past. The
improved coherence is important in more traditional nonlinear optical applications and has resulted
in a reevaluation of some nonlinear optical coefficients.

The noise properties of the diode-pumped NPRO lasers are suited to frequency stabilization
applications. Relative stabilization to a reference cavity of 0.3 Hz has been demonstrated. There
is now a challenge to reproduce this level of frequency stability in the output of an OPO at
arbitrarily selected frequencies. Diode-pumped, monolithic, solid-state lasers have lower free
running noise than other lasers and potential for higher levels of stabilization.
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The frequency-tuning and control properties of monolithic doubly resonant optical parametric oscillators are
analyzed for stable single-mode pump radiation. Single-axial-mode operation is observed on the idler and the
signal for both pulsed and continuous pumping. Projections are made for tuning-parameter tolerances that are

required for maintenance of stable single-frequency oscillation.

Continuous frequency tuning is possible

through the simultaneous adjustment of two or three parameters; thus the synthesis of specific frequencies
within the broad tuning range of the doubly resonant optical parametric oscillator is permitted.

1. INTRODUCTION

An analysis of the frequency-tuning properties of doubly
resonant optical parametric oscillators (DRO’s), based on
both experimental observations and theoretical modeling,
is presented. Specific details in this presentation of fre-
quency control and synthesis apply to monolithic DRO's
constructed from LiNbQO;. Where possible, however, re-
sults are given with more general applicability. The pur-
pose is achievement of a quantitative understanding of
the conditions required for stable single-axial-mode para-
metric oscillation and the resulting frequency stability
of the DRO output. Approaches to frequency synthesis
and continuous frequency tuning that are based on the
simultaneous adjustment of two or three tuning variables
are described.

The potential of optical parametric oscillators (OPO’s)
for the generation of tunable coherent radiation was rec-
ognized more than twenty-five years ago.! The complex
tuning properties of DRO's were also revealed in early
demonstrations and analyses.?™* Optical parametric os-
cillation has been discussed in detail in a number of re-
views,®®7 and it is a subject treated in more general terms
in a number of books that discuss nonlinear optics.® Im-
provements in the quality of nonlinear-optical materials
and in the coherence of pump sources led to a number of
advances in the performance of OPO’s. Using recent ex-
perimental results obtained with stable singie-mode pump
sources and monolithic DRO’s constructed from high-
quality LiNbO; nonlinear-optical material, we are able
to apply and to extend the earlier analyses.

Resonance of both the signal and the idler frequencies,
double resonance, offers the advantage of a lower thresh-
old for parametric oscillation than in single resonance.
Double resonance also provides additional frequency selec-
tivity in OPO operation. These desirable properties of
double resonance, however, come with a considerable in-
crease in the complexity of tuning and with more restric-
tive tolerances on pump stability and cavity stability.
Diode-pumped solid-state lasers provide the required
pump-frequency stability, and monolithic cavities provide

0740-3224/91/030000-00$02.00

the required mechanical stability in the OPO. Continu-
ous tuning is difficult in DRO’s, which typically tune
with axial mode hops and cluster jumps over hundreds of
axial modes. Nevertheless, using improved pump sources
and nonlinear-optical materials coupled with multiple-
parameter control, DRO’s can in principle be operated
stably and tuned continuously, thus widening their range
of applications.

DRO's can provide highly coherent output, re-
producing the statistical properties of the pump with
little additional noise. This was shown theoretically by
Graham and Haken® in a quantum-mechanical analysis of
the DRO, and it was demonstrated in experimental mea-
surements of the coherence properties of the DRO. The
quantum-mechanical analysis showed that the diffusion
of the sum of the signal and the idler wave phases follows
the phase diffusion of the pump wave adiabatically. Al-
though the phase difference of the signal and the idler
may diffuse in an undamped manner, the statistical prop-
erties of a DRO are basically the same as those of an ideal
laser. A result of these properties is the addition of only a
small amount of phase noise in the output of the DRO
above that present in the pump. This has been confirmed
in coherence measurements of the output of a cw DRO.®
For periods of ~1 min, the free-running DRO that was not
servo locked oscillated on a single mode pair without a
mode hop. That the DRO did not add significant excess
linewidth over that present on the pump was demon-
strated with the measurement of beating between the
DRO output and an independent diode-laser-pumped solid-
state lager during the periods between mode hops. The
beat-note linewidth was 13 kHz, which was the expected
value for the typically 10-kHz linewidths of the pump
laser and the independent reference laser. Additional co-
herence measurements showed that the signal and the
idler were phase anticorrelated when referenced to the
pump laser. Also, the width of the signal-idler beat note
with the DRO near but not at degeneracy was less than
1kHz. The signal-idler beat note indicates the frequency
fluctuations added to the DRO output in addition to those
present on the pump.

© 1991 Optical Society of America



The results of the classical stationary analysis pre-
sented here are consistent with the earlier analyses and
measurements. The main purpose of this presentation ia
explanation of the complex tuning properties of the DRO
in order to permit fuller use of its remarkable coherence
and spectral properties. The theoretical presentation of
Section 2 begins in Subsection 2.A with a qualitative
overview of DRO tuning. This overview is used to estab-
lish the extensive terminology required for the discussion.
In Subsection 2.B the threshold condition for paramet-
ric oscillation is reviewed and recast in terms that are
more easily adapted to tuning calculations. The theoreti-
cal basis of frequency selection is discussed in Sub-
section 2.C. Experimental tuning data is presented in
Section 3. The degree to which our theoretical model de-
scribes the observed tuning justifies some confidence in
its use for predictive calculations in Section 4. Results
are summarized and discussed in Section 5. Finally, the
properties of MgO:LiNbO; that are required for modeling
the experimental data are reviewed in Appendix A.

2. THEORY

A. DRO Tuning Overview .
A nonlinear-optical material pumped by intense optic
radiation at frequency w, can provide gain at two lower
frequencies, called the signal and the idler and related by
the conservation-of-energy condition

W, = w, + W, 1)

The parametric interaction is phase dependent, and
proper phasing is required for energy to flow from the
from the pump field to the signal and the idler fields.
Phase-velocity matching ensures that the relative phases
of the three waves do not change with propagation through
the nonlinear material. Phase matching is described by
the wave-vector mismatch, which for the case of collinear
propagation can be expressed by the scalar relationship

Ak = k_, - k, - k,‘ = (n,w, - Rw, — n;m;)/c. (2)

where k,, k,, and k; are the respective wave-vector magni-
tudes of the pump, the signal and the idler waves, with
corresponding indices of refraction given by n,, n,, and n,
and ¢ is the velocity of light. Useful parametric gain
exists in the range of signal and idler frequencies for
which |Ak| s w/l, where ! is the length of the nonlin-
ear material. The parametric gain is maximum near
Ak = 0. Phase matching is often achieved by controlling
the birefringence of a nonlinear crystal through tempera-
ture or angle of propagation.

An OPO requires feedback at either (or both) the signal
or the idler frequencies. If there is feedback at only one
frequency, the device is called a singly resonant oscillator.
Doubly resonant oscillators have feedback at both the sig-
nal and the idler frequencies. Feedback can be provided
by placing the nonlinear material in a cavity formed by
two external mirrors, or in the case of monolithic OPO’s,
highly reflecting coatings can be applied directly to the
nonlinear material. Ring-cavity configurations offer the
advantages of reduced feedback to the pump source and
improved OPO conversion efficiency.”" Figure 1 illus-
trates schematically several configurations for parametric

i

IP(O) ma—- lp(i)
(a) — I,(l)
1,(0) —= —1)

w, =0 + o, |akl<my, Ak=k; -k -k

—p [V
—_
I;

_—
o
~—
=
=
i 1o/

@ ———
M1 M2

Fig. 1. (a) Schematic representation of optical parametric ampli-
fication. Optical parametric oscillators can be formed by the ad-
dition of mirrors that are separate from the nonlinear material, as
shown in (b). Monolithic oscillators (c) and (d), with highly
reflecting coatings (M's) applied directly to the nonlinear material,
offer the advantages of low loss and rigidity that are important in
stable, single-frequency DRO operation. Ring oscillators (d) offer
the advantages of reduced feedback and improved conversion effi-
ciency over standing-wave oscillators.

oscillators. Both standing-wave and ring-cavity mono-
lithic DRO's were used for the experimental observations
described in this paper. The tuning properties were
quite similar, and the same model of tuning properties
could be used for both, because the return path length dif-
fered little from the guin path in the ring resonators.

Phase matching is the major factor in determining
broad tuning properties of an OPO, although cavity reso-
nances have the major effect on details of frequency tun-
ing. The conditions w, = w, + v, and Ak = 0 define
phase-matching curves. The most commonly shown OPO
phase-matching curve is the parabolalike shape for type-I
phase matching in a birefringent crystal, for which the
signal and the idler waves have the same polarization and
the pump wave has the orthogonal polarization. Fig-
ure 2(a) shows a near-degeneracy (w, ~ ;) section of the
temperature-tuning curve for a LiNbO,; noncritically
phase-matched OPO. Propagation is along a crystal prin-
cipal axis in noncritical phase matching, which reduces
dependence on propagation direction and eliminates bire-
fringent walk-off.

The spectral width of the parametric gain is also deter-
mined by phase matching. A typical spectral distribution
for single-pass gain at fixed temperature is shown in Fig.
2(b). Doubly resonant oscillation also entails simultaneous
signal and idler resonance. Dispersion causes different
cavity axial-mode frequency spacings for the two waves,
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Fig. 2. (a) Typical OPO tuning curve near the degeneracy fre-
quency fo = f,/2, where f, is the pump frequency. The signal
and the idler frequencies are shown for a LINbO, OPO as a func-
tion of the tuning parameter, in this case temperature. For a
fixed value of the tuning parameter, single-pass parametric gain
exists in bands that are centered on the phase-matching wave-
lengths, as shown in (b). DRO’s have the added constraint that
the signal and the idler cavity resonances must coincide in satis-
fying the condition f, = f, + f,, which results in output at cluster
frequencies (c). Only two or three clusters, represented by open
lines, are located within the gain bandwidth. Usually one clus-
ter, represented by the longest open line, dominates.

and the simultaneous resonance condition thus occurs only
at intervals in frequency. The regions of simultaneous
resonance, called cluster frequencies, are indicated in Fig.
2(c). Early DRO's were observed to oscillate on a group or
cluster of adjacent cavity axial modes. The wavelength of
the cluster would at first shift continuously with tuning and
then exhibit a discontinuous jump to another cluster of
modes. The curves of Fig. 2 are intended to illustrate some
general properties of the frequency tuning of DRO's. The
curves were calculated for the 12.5-mm-long monolithic
MgO:LiNbO;, oscillators, pumped at 564 THz (532 nm),
that are discussed in this paper.

A useful device for understanding the requirement for
simultanecus cavity resonances is a type of diagram used
by Giordmaine and Miller?; the cavity resonances near
the oscillating signal and idler frequencies are plotted as a
function of the respective frequencies, as shown schemati-
cally in Fig. 3. The difference between signal and idler
axial mode spacings, 3w, and Sw,, respectively, is exagger-
ated in this figure for the purpose of illustration. One
frequency, here the signal, increases from left to right.
The other frequency scale, the idler, is determined by the
first scale and the conservation-of-energy condition in
such a way that a vertical line drawn through the diagram
will give signal and idler frequencies that satisfy Eq. (1).
If a signal-idler resonance pair lie on a vertical line, they
satisfy the simultaneous resonance condition. If the tem-
perature or the dc electric field applied to the crystal is
changed, the position of the resonances will advance along
the scales, one to the left and the other to the right, at
slightly different rates because of dispersion, but the

scales will not change. If pump frequency is changed, the

frequencies of the cavity resonances will not change, but
one of the frequency scales will be displaced with respect
to the other, and the respective resonances will move with
that scale.

Two types of discontinuous frequency shifts are indi-
cated in Fig. 3. One is an axial mode hop and the other is
a cluster jump. As a tuning variable is changed, better
coincidence in satisfying the conservation-of-energy con-
dition is attained on adjacent signal and idler axial modes.
It then becomes advantageous for the oscillation frequen-
cies to hop to the adjacent modes, to one higher in fre-
quency and the other lower. This type of discontinuous
frequency change is referred to as a mode hop. Other fac-
tors such as phase matching also affect the selection of the
oscillation frequencies. As the tuning variable changes,
phase matching also changes, and at some point it is ad-
vantageous for the oscillator to jump to the next cluster.
This is illustrated in the schematic tuning curve of Fig. 4.
The signal or the idler oscillation frequency progresses
along a cluster curve in a series of mode hops until another
cluster curve more closely approaches phase matching.
At that point the larger discontinuous frequency change
of a cluster jump takes the oscillation to the next cluster
curve. Figures 3 and 4 are only schematic, with disper-
sion greatly exaggerated. Typically there several hun-
dred axial modes between adjacent cluster frequencies.

Fig. 3. Diagram’ that shows the relationship between the DRO
signal and idler resonance frequencies and the conservation-of-
energy condition. Signal resonances are plotted as a function of
signal frequency w, on an ordinary linear scale, with fraquency
increasing from left to right. The idler frequency scale is deter-
mined by that of the signal and the relationship w, = @, + w;.
In the display of idler resonances, therefore, frequency increases

to produce coincidence. The detail on the left-hand side shows
the frequency mismatch Aw for a mode pair and its components
Aw, and Aw;, which are the frequency displacementa
from the centers of the signal and the idler cavity resonances to
the frequencies most favorable for paramstric oscillation. Dis-
persion is exaggerated in this schematic representation. There
are typically hundreds of cavity axial modes between the cluster
frequencies for which Aw = 0.
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Fig. 4. Schematic representation of a detailed portion of an ide-
alized tuning curve for a DRO. Oscillation progresses along clus-
ter curves in discontinuous frequency changes, called axial mode
hops, as a tuning variable is changed. A larger discontinuous
frequency change, a cluster jump, occurs when better phase
matching exists on an adjacent cluster curve.

Simultaneous resonance of signal-idler mode pairs oc-
curs as a tuning parameter is continuously adjusted. In
general, however, coincidence is not perfect, and oscilla-
tion of a particular mode pair depends on the degree of
frequency matching and phase matching. The frequency
mismatch Aw of a signal-idler mode pair can be defined as
the shift in frequency that is required of either the signal
or the idler in order to bring the two resonances into coin-
cidence to satisfy Eq. (1). It is convenient to express the
frequency mismatch as the sum of two components:

Aw = Aw, + Aw; . 3

Here Aw, is the frequency shift from the peak of the sig-
nal resonance to the signal frequency that is most favor.
able for oscillation for that mode pair. Correspondingly,
Aw; i the frequency shift from the peak of the idler reso-
nance to the idler frequency that is most favorable for os-
cillation, as illustrated in Fig. 3. The signal component is
measured on the signal frequency scale, and the idler com-
ponent is measured on the idler frequency scale. The di-
rections of these scales are opposite. One increases from
left to right, and the other is reversed, increasing from
right to left. Therefore Aw, and Aw; appear in opposite
directions in Fig. 3, even though they have the same sign.
The frequency displacements of the signal and idler from
their respective resonance peaks are discussed in detail in
Subsection 2.C. It is useful to consider the dependence of
the OPO threshold on frequency mismatch and phase mis-
match first.

B. DRO Threshold with Imperfect Signal-Idler

Frequency Coincidence

Even an extremely small frequency mismatch can. have
significant effects on frequency selection and threshold of
the DRO, particularly when cavity finesse is high. The
threshold relationship obtained here is the same as that
derived in the quantum-mechanical analysis by Graham
and Haken? and is similar to but more detailed than the
threshold equation given by Giordmaine and Miller.? The
result given here ig in terms of classical electromagnetic
theory and is more easily applied to the tuning analysis

that follows. This threshold relationship is limited to
cavities with moderate-to-infinitesimal losses. The ef-
fect of phase and frequency mismatch on the thresholds of
DRO’s with arbitrary cavity losses was discussed by Falk.!?
Falk’s results are used to estimate the conditions under
which the threshold equation used here is appropriate.
The threshold for oscillation is obtained by setting the
parametric gain equal to the cavity losses. The electric
fields of the pump, the signal, and the idler waves are ex-
pressed in terms of complex amplitude and exponentials:

Ei(z,t) = YA[Ej(z)exp i(k;z — w;t) + c.c],

where the subscriptj indicates signal, idler, or pump, & is
the wave vector magnitude, @ is the angular frequency, 2 is
the coordinate in the direction of propagation, and ¢ is time.
The couped equations that describe parametric amplification
of monochromatic plane waves traveling in the z direction
are”?

% = ix, E E;* exp(iAkz), (4a)

% = ix.E, E,* exp(iAkz), (4b)
and

% = ix, E,E, exp(—iAkz), (4c)

where mks units are used and x, = w,d./(n.¢), x; =
widue/(nic), and x, = wyd.w/(nyc), with n,, n;, and n,
the respective refractive indices for the signal, the idler,
and the pump, ¢ the velocity of light, and d.n the effective
nonlinear-optical coefficient. The solution used here is
derived under the assumptions that at threshold pump de-
pletion is insignificant and that the respective changes in
signal and pump amplitudes, AE, and AE,, are small com-
pared with the amplitudes. Hence E, and E,; are treated
as constants in calculating the changes, that is,

AE, = ix,E,E*l sinc(Akl/2) (5a)
and
AE; = ix,E,E,*l sinc(Aki/2). (5b)

The length of the nonlinear crystal is again given by {, and
the sinc function is defined by sincx = (sinx) / x.

For the low-loss DRO’s considered here, Eqa. (5) are ade-
quate for modeling the parametric gain. Other solutions
to Eqgs. (4) include general monochromatic plane-wave so-
lutions®® that permit both pump depletion and arbitrary
changes in E, and E,; and somewhat more restrictive solu-
tions that involve no pump depletion but have arbitrarily
large changes in E, and E;.»” A solution of the latter type
was used'? for threshold analysis of DRO’s with arbitrary
strength of resonance.

The parametric gain must compensate for both a de-
crease in amplitude and for the phase change that is due to
propagation in the cavity. The phasor diagram shown in
Fig. 5 helps to illustrate this discussion. After a round-
trip cavity transit the signal electric-field amplitude is re-
duced by a factor (1 - a,), and the phase is shifted by an
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Fig. 5. Phasor diagrams schematically show amplitude losses a,
and a; and phase shifts ¢, and ¢, after one round-trip cavity
transit for the signal and the idler, respectively. At thresh-
old the increments of electric-field amplitude added by optical
p:ﬁ"metric amplification, AE, and AE;, must restore the origi-
nal fields.

angle ¢,. Similarly, the idler amplitude is reduced by
(1 ~ a,), and the phase is shifted by ¢;. At threshold this
change is balanced by the increments of the electric field
AE, and AE;, added by the parametric interaction:

(1- an)exp(i"’l)Eu + AE, = E, (6a)
and
(1- a.-)exp(iwl)E.- + AE; = E;. (6b)

Choosing time so that the pump amplitude is real,
E, = |E,|, expressing the signal and idler amplitudes as
E, = |E.lexp(i$,) and E; = |E|exp(i¢;), and applying the
conditions that a,, ai, ¢,, and ¢; are all small, we can
write Egs. (6) as

AE, = |E,|[(a,® + ¥, explid, — i) (7a)
and
AE; = |Ei(a® + v explidi — ivi), (7b)

where v, = tan~'(y,/a,) and y; = tan~'(¢/a:).
Substituting Eqgs. (7) into Eqgs. (5) results in two equa-

tions for the complex arguments and two equations for

the magnitudes. The relationships for the complex

arguments,

b+ di =7 + 72 (8a)
and

b+ di=vi+ /2 (8b)
immediately yield y, = y; for the stationary solution, or

Note that Eqs. (8) are consistent with the result that the sum
of the signal and idler phases is constant when referenced to
the phase of the pump for stable single-mode-pair
operation. 1°

The sum of the unpumped-cavity-round-trip phase
shifts,

¥ =4, + ¥, (10a)

is useful for the purpose of comparison with the results of
Ref. 12 and for conversion to frequency mismatch. When
Egs. (9) and (10a) are combined, the individual phase
shifts can be expressed in terms of the sum by

a,
¥ = . + o (10b)
and
ai
$i= ara’ (10c)

The threshold equation is obtained by taking the prod-
uct of the two equations for the magnitudes that are ob-
tained when Egs. (7) are substituted into Eqgs. (5), with the
result that

a2 + ¢ (ad + ¢ = k.« E,M? sinc®(Ak)/2)
= I'¥? ginc*(AkY/2). (11)

The quantity I'? is the parametric gain for perfect phase
matching, and it is proportional to the pump intensity.’
With Egs. (10b) and (10¢), the threshold relationship given
by Eq. (11) can be written in the form

272 _ a,a; dlz .
= sinc¥(Akl/2) 1+ (a, + ai),] aa

Figure 6 shows the DRO threshold parameter I'%* as a
function of the phase-shift sum ¢ as given by Eq. (12) for
two sets of cavity losses a, = a; = 00087 and a, = a; =
0.0033, corresponding to finesse values ¥ = 360 and
¥ = 960 of the DRO’s used in the experimental measure-
ments. The shape of the threshold curve does not change
significantly, but the minimum value is translated toward
zero as the losses decrease. The width of the threshold
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Fig. 6. Comparison of thresholds for DRO’s with differing cavity
finesses. Thresholds are caiculated as a function of the sum of
the cavity-round-trip phase shifts ¢ with Eq. (12) for two DRO’s
with cavity finesse $, = ¥, = 360 and ¥, = &, = 960. The
shape of the curve does not change, but the width, defined as the
region over which threshold is less than twice its minimum value,
decreases for higher finesse.



curves, defined as the region over which threshold is less
than twice the minimum value, therefore decreases as
cavity losses decrease.

In the application of Eq. (12) thresholds are expressed in
terms of cavity finesse because it i8 easier to measure the
ratio of resonance width to spacing than it is to measure

losses directly. A comparison of the above analysis with '~

that of a parallel plate interferometer'* or of optical cavi-
ties in general'® shows that the amplitude loss coefficients
a, and a; are related to the cavity finesse at signal and
idler frequencies ¥, and %;, respectively, by.

¥, = 7/a,, ¥ =~ 7w/a;. (13a,b)

It is also more convenient to use frequency mismatch than
phase shift. The components of the frequency mismatch
are related to the phase shifts by

Aw, = M.', Aw, = Swidi (14a,b)
2 2r

When Eqgs. (3), (10) and (12)-(14) are combined, the thres-
hold equation becomes

-2 2Aw% 7, 2
¥ ¥, sinc’(Akl/2)[1 * (9; Sw, + 9.8«».-) ] (19)

The threshold relationship given by Egs. (12) or (15)
agrees with other threshold expressions under appropri-
ate conditions. This result was obtained with a firat-
order plane-wave approximation for parametric gain. In
the case of perfect phase matching, Ak = 0, and no fre-
quency mismatch, Aw = 0, these equations reduce to
I'%3 = a,a;, which is the result obtained directly for this
case.” Focusing and coupling to cavity modes!® must be
considered for quantitative threshold calculations. The
plane-wave derivation of threshold is adequate for the
analysis of tuning when it is necessary to know only the
relative dependence of threshold on Ak and Aw.

There is also agreement with the central result of Falk's
analysis!? in the limit of high cavity finesse, that is,
a, << 1 and @; << 1. Rewritten in the notation used
here, Falk’s Eq. (9) becomes .

1—-212 =

. of siny ) _
2 ) B sxn[Z tan (_C pa—, w] !
P a2 () sme(%)
sm[tan (C + cos ¢ ]smc 2 sine 2
(16)
where, definingR, =1 - a,and R; = 1 — qy,
_R(1- R} R 1-R?
B=%icg:’ C"R1-R:

Equation (16) is a more accurate approximation of the
DRO threshold applicable for arbitrary cavity loss. How-
ever, it is unwieldy and must be evaluated as a limit when
¢ = 0 or when a, = g;. Evaluation of Eq. (12) yields
threshold values that differ from those obtained from
Eq. (16) by approximately the fraction (a,a;)'?. There is
a fortuitous partial compensation for this disparity in
the approximation for finesse given in Eqgs. (13). For
%, = & = 5, the difference between Eqs. (15) and (16) is

less than 13% at the frequency mismatch for which
threshold is twice its minimum value, and the difference
decreases with decreasing frequency mismatch. For
%, = ¥ = 10, the difference is 4% at twice minimum
threshold, and the agreement again improves as minimum
threshold is approached.

Equations (12) or (15) could be used directly to deter-
mine the mode pair with the lowest threshold for oscil-
lation. It is more convenient, however, to restrict the
possible mode pairs on which oscillation may take place to
a small number, based on frequency mismatch and wave-
vector mismatch considerations. This is done in Subsec-
tion 2.C, where it is shown that there are three mode pairs
in the phase-matching bandwidth for which the frequency
mismatch is a minimum. Which of these three mode
pairs has the lowest threshold depends on the respective
values of Ak, Aw, and the cavity finesse.

C. Frequency Selection in the DRO

The selection of signal and idler frequencies in a cw DRO
operating on a single mode pair is determined by two con-
ditions: the conservation of energy stated in Eq. (1) and
the minimum threshold for oscillation. An approxima-
tion for the threshold condition was given in Eq. (15).
The conservation-of-energy condition becomes implicit in
the analysis of the condition of minimum threshold. In
this analysis it is convenient to follow the approach used
by Boyd and Ashkin® and to define the signal and the idler
axial mode numbers

m, = 2in, /A, = ln,w,/(1c) (17a)

and

m; = 21n.~/A.~ = ln.-w.-/(vrc), (17b)

which are continuous variables that take on integer values
at cavity resonances. The free-space wavelengths of the
signal and the idler are given by A, and A;, respectively,
and 2In, and 2In, are the respective optical lengths for a
round-trip cavity transit. The free spectral ranges or
mode spacings of the signal-idler resonances, §w, and Sw;,
respectively, are the frequency changes that change the
mode numbers m, and m, by one; that is,*

am, | .
o, - me (n. + w, .) = Sw, (18a)
and
om; 4 an; -1
a&'i = e (n.- + (maw‘) = w”". (18b)
Tﬁe sum of the mode numbers
m=m,+m, (19)

which is also a continuous variable, is useful for the de-
scription of cluster effects. A signal frequency and an idler
frequency that satisfy Eq. (1) and for which m is an integer
comprise a cluster frequency pair. In general, cavity reso-
nances are not located precisely at the cluster frequencies.
Only the sum m, + m; must be an integer at the cluster
frequencies; the individual mode numbers in general dif-



fer from integers by amounts equal in magnitude but op-
posite in sign. The cavity resonance pairs that most
closely satisfy the conservation-of-energy condition and
therefore that are most favorable for oscillation are also
the resonances for which m is most nearly an integer.
Equivalently, oscillation frequencies of a DRO are dis-
placed from a frequency pair at which m is an integer by
no more than one half of the respective axial mode spac-
ings, whereas there are typically hundreds of modes be-
tween adjacent signal or idler cluster frequencies at which
m i3 an integer.

Two further quantities that are useful for the descrip-
tion of the mode hops and cluster jumps of DRO tuning,
Am and Am,, are obtained by subtracting the integer
nearest the mode number from the mode number:

Am = m - ROUND(m) (20a)

and

Am, = m, - ROUND(m,). {20b)
These quantities are used in the calculation of oscillation
frequencies and uning-variable tolerances.

At optimum operating conditions, the quantities Ak, Am,
and Am, will all be zero, indicating perfect phase matching
and simultaneous cavity resonances at the desired signal
and idler frequencies. Adjustment of three independent
parameters is necessary in order to reach this condition.
The discussion presented here is given in general terms
with quantities Ak, m, and m, and in specific terms of the
tuning or control parameters that are used in the exper-
imental observations. The experimental observations use
temperature T and applied potential V as adjustable
parameters to control the output signal frequency @,. Pump
frequency @, is used as the required third adjustable
parameter for the calculations. Simple Taylor's expansions

for Ak, m, and mg were found to be adequate for modeling

the observed frequency tuning:
_ [3AR 1 [3%Ak 1
Ak = (aw,).’(w. wa0) + 2 (aw,’ )‘,(wa W,0)
Ak Ak
+ (3:’:)-.(‘% - wpo) + W(T - Ty
Ak
+ —BV-V + Aky, (21)
am 1{&#m 2
m = (aw.).’(w. - U-.o) + 2 (aw'g)-'(wc - Weo)
am am om
+ (3;_,).,(“” - wpo) + —;(T ~To) + —BVV + mo,
(22)
and
am, 1 #’m,
m, = -a;"(w. - W) + Em(w. - wyo)
LT Y LT 23)
T YT .0

A second-order derivative is used for signal frequency be-
cause the first-order derivatives (3Ak/dw,)., and (3Am/
dw,)s, become zero at degeneracy, and dispersion of
am, /dw, is essential to the analysis.

The notation of a partial derivative in parentheses with
a parameter subscript to the right-hand parenthesis indi-
cates that the parameter of the subscript is held constant
for the differentiation. The conservation-of-energy con-
dition is introduced through this device. Consider a
function that is dependent on the signal, the idler, and the
pump frequencies f = f(w,,w;, w,), and require that the
conservation-of-energy condition w, + w; = w, hold.
Differentiation with respect to w,, with w, held constant,

_requires that as w, is increased w; must decrease, or

(;‘f_) A

dw, dw, Jday
and, similarly,

(i) L
dwple, Odwp dw;

The derivatives used in Eqgs. (21)-(23) are expanded in
Table 1. The differentiation is straightforward and can
be verified by inspection of Eqgs. (2), (17), and (19).

Table 1. Derivatives Used to Calculate Tuning
of a Monolithic DRO
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1. Phase-Matching Curve and Cluster Curves
A number of equations considered below are identical ex-
cept for the exchange of the tuning variables. An econ-
omy of notation is possible through the use of a general
tuning parameter {, which is T, V, or w, in the specific
example or, more generally, is any single parameter used
to tune a DRO. A phase-matching curve gives the signal
frequency for which Ak = 0 as a function of the tuning
parameter { and as used here is denoted by @, pm({).
This curve is obtained from Eq. (21) or from a similar
equation by setting the other adjustable parameters to
fixed values and setting Ak = 0. The cluster curves
woal) give the signal cluster frequencies as a function of
the tuning parameter {. The cluster curves can be ob-
tained from Eq. (22) or from a similar equation by setting
m to integer values and again setting the other adjustable
parameters to fixed values. For type-l1 phase matching,
the phase-matching curve is a parabolalike curve, as
shown in Fig. 2, and the cluster curves are a family of
parabolalike curves. The oscillating frequencies are clos-
est to the cluster curves near the points where the cluster
curves intersect the phase-matching curve.

The signal frequency separation of adjacent clusters {2,
can be obtained from the second-order approximation
1 (G’m

om ——) Q5.2 (24)
-y

Am(cluster) = *1 = (——) Qs + — 3
"y dw,

w, 2
Away from degeneracy the first-order term dominates,
and Eq. (24) is approximated by

= a—’n--) - = +_______8w,-8w. ]

fs. —(aw. - T dwi — dw, (28)
in agreement with Ref. 4. Phase-matching limitations
result in a gain bandwidth with half-maximum values
at the frequencies for which Ak = +0.886w/] =~ +m/l
and a corresponding signal frequency full width at half-
maximum of

-1
Aw,(Gain FWHM) =~ 277 (%i—k) l (26)
0/ uy

In the specific case of the monolithic DRO, for which
derivatives are given in Table 1, n/l(3m/dw,)., = —(3Ak/
dw,)s, and Aw,(Gain FWHM) = 2Q5. Since the fre-
quency separation of the clusters is approximately one
half of the parametric gain bandwidth, there are two or
three clusters within the gain bandwidth. This is true
for any DRO in which the nonlinear crystal is the only
dispersive component and the crystal is traversed twice in
each round-trip cavity transit but has parametric gain in
only one direction.

2. Oscillation Frequencies

The oscillation frequencies are determined by phase
matching, the center frequencies of the signal and the idler
cavity resonances, the frequency mismatch of the reso-
nances, the finesse values of the resonances, and the axial
mode spacings. To model experimental observations, we
calculate the frequencies of the parametric oscillation by
the following procedure. First the signal frequency for
phase matching , pu is found for specified tuning parame-

ters with the condition Ak = 0. Next the signal cluster
frequency w,q that is closest to w,py is found with the
condition Am = 0. If the DRO cavity has only moderate
or low finesse and if the precise oscillating frequency and
mode hops are not of concern, these two steps are all that
are required. The extra resolution of frequency tuning
can be obtained using the value of Am, at the cluster fre-
quency w,q. This value is called Am,(, to indicate that it
is calculated at the cluster frequency w,q for the specified
tuning conditions.

The procedure for determining the fine details of tun-
ing is illustrated in Fig. 7. The signal cluster frequency
w,c1, Obtained by the steps described above, is a reference
point from which to start. The center of the nearest
signal resonance is displaced from w,c by frequency
-Am,gbw,, where Sw, is the signal axial mode frequency
separation. The center of the nearest idler resonance is
displaced by —~Am,; céw; from the complementary idler
cluster frequency wiq = w, — w,q, where Sw, is the idler
mode frequency separation and w, is the pump frequency.
Since w,q is a cluster frequency with Am = 0, then
Am, = —Am,q, which permits the frequency mismatch
of the signal-idler mode pair to be expressed as

Aw = Amya(8w, — Swi). @n

Recall that the frequency mismatch is the shift in fre-
quency of either the signal or the idler resonance that is
necessary in order to bring the resonance pair into coinci-
dence to satisfy the conservation-of-energy condition.
The displacement of the signal oscillation frequency
w,0s from the center of the signal cavity resonance is
Aw,, and the displacement of the idler oscillation fre-
qUency o, oe from the center of the idler cavity resonance
is Aw;, From the above definitions and conditions im-
posed on round-trip cavity phase shifts for a stationary
solution given in Egs. (3), (10), (13), and (14), it follows that

S, /7,
Wch w,
—'_f( * -
@y Oxc
- -Am, 8w, Aw,
! ’1“
so o
= Amx.C.l.&')i so,
o_| A
—) =}
e 9, Osc

Fig. 7. Signal-idler resonance diagram similar to Fig. 3, expanded
in detail to show the relationships between quantities. The signal
and the idler cavity resonances on which oscillation occurs are
displaced from the respective cluster frequencies @, , and a), ., for
the general case of nonzero frequency mismatch. The DRO
oscillating frequencies w, o, and @, o, divide the frequency
mismatch Aw into the components A, and A,



Aw, = Awdw, ¥, /5w, F: + 6w, F,) (28a)

and

Aw; = Awdw; F,/(6w, F + 6u; F,). (28b)

Finally, the signal oscillation frequency is given by the
sum of the cluster frequency plus the frequency separa-
tion of the signal cavity resonance from the cluster fre-
quency plus the frequency shift from the center of the
signal cavity resonance, that is,

WeOse = Wyl — Arn,,c.&n. + Aw,

dw,0wi(%, + 9,-).

T o T AT+ 0

(29)

Equations (27) and (28a) are used to obtain the second
step of Eq. (29).

The rate of frequency change associated with a general
tuning parameter { could be obtained by direct differ-
entiation of Eq. (29) or more simply by considering the
tuning rates of the cavity resonances. The tuning rate for
the frequency of the signal mode is —8w,(dm,/d{) and that
for the frequency of the idler is —6@;(dm;/d{). The tuning
rates of the cavity resonances are combined to yield the rate
of change of the frequency mismatch,

dAw om, am; am, am
— = b, — j—= - )—_ —
Y w e + dw e (bw, — bw;) P + dw Y

The tuning rate of the signal oscillation frequency is the
sum of the tuning rate of the signal resonance plus the
fraction 8w, %:/(8w,¥F: + 8w,;%,) of 3Aw/d{, that is,

3 4, 0nc _ dw,0w; (
a( 8(4).3,‘ + 8(059.

am am,
5.'6—( - (¥ + 9-')—37) (30)

This tuning is limited to a small range by mode hops or
increased cavity losses as the oscillation is pulled off the
peaks of the cavity resonances. On a broader scale, tun-
ing progresses along a cluster curve in a series of mode
hops. If finesse is high, it is possible that the oscillation
jumps back and forth between adjacent cluster curves and
also hops from one mode pair to the next along each of the
cluster curves. The analysis of cluster jumps requires
that the mode-hop structures on the two or three cluster
curves that are closest to phase matching be compared in
order to determine which cluster curve provides condi-
tions most favorable for oscillation.

The tuning rates in the regions between mode hops and
cluster jumps, which are described by Eq. (30), are
strongly dependent of the relative values of finesse of the
signal and the idler cavity resonances. Some caution,
however, is required in the use of Eq. (30). For example,
the calculation of 0@, o,/ 9V and d@, o,/ 0T for DRO's
with nearly equal signal and idler finesse involves the small
difference of two quantities. In such situations it is
important that the terms on the right-hand side of Eq. (30)
be evaluated accurately for the specified operating
conditions.

3. Tuning Limits and Mode Hops
Mode hops are periodic along the cluster curves, occurring

every time m,q changes by one. Recall that m,.q is the
value of m, on the cluster curve for which Am = 0. The
change of the tuning parameter A{Hopsmecing that corre-
sponds to a mode hop is a quantity that is easily measured
experimentally. Since a mode hop corresponds to a
change of one in m,g;, it follows that the tuning parameter
change that corresponds to the mode-hop spacing is

am,a\™! )
(=)l @

In the evaluation of am,ci/a¢ it is helpful to use the
derivative

Al Hop spacing =

Joag _gm(im)
;74 o \dw,/.,
Sw,bw; om
= = —— 32
dw; — 8w, 32)

The first step simply states that the cluster frequency w,c
must change with the tuning parameter { in such a way
that m does not change, and the second step is accom-
plished by using Eqgs. (18) and (19). 1t is possible to ex-
pand the derivative am,q/d{ by first using the chain rule
of differentiation and then Eqgs. (18) and (32) to obtain

foi . (39)

dmua  omy  dm duyg  dm. B
Sw; - bw,

af af * dw, of of

Another useful parameter is the maximum frequency
shift from the cluster curve that can be achieved without
a mode hop (w.ne — @sa). This maximum is obtained
directly when the extreme values of Am, = *1/2 are in-
serted into Eq. (29), yielding

1 80)18&).(9[ + gl)

R 5 - 34
Woboy = W0 = T S0F 4 b0, (34)

Cavity finesse can also limit the single-parameter tun-
ing range. It follows from Eq. (15) that threshold is
double its minimum value when the frequency mismatch
Aw reaches the value

Fbw, + Fou; )
2% F,

Aw = =

The corresponding value of Am,q is obtained from
Eq. (27). On substitution into Eq. (29) the maximum dis-
placement of signal oscillation frequency from the cluster
frequency allowed by cavity finesse is found to be

- +5. + gj 8@.8@[ R
@aPa @ua = = 25. 5.' 8&).‘ - 50).

If finesse is large the frequency displacement allowed by
Eq. (35) becomes significantly smaller than the frequency
displacement required for a mode hop described by
Eq. (34). In this case parametric oscillation on the cluster
curve closest to phase matching ceases in a region near
the mode hop. It is then poesible for the parametric oscil-
lation frequencies to jump to an adjacent cluster curve
that is still within the phase-matching gain bandwidth if a
favorable coincidence of signal and idler resonances exists
on that cluster curve.

(35)



Plotting the mode-hop frequency limits w,us and the
finesse frequency limits w,rn in addition to the cluster
curve provides additional information concerning the fine
detail of tuning. On a broader scale, it is informative to
display curves defining the phase-matching gain band-
width along with the phase-matching curve. It may also
be useful to display more than one cluster curve near the
phase-matching curve.

An attempt was made to keep the results of this section
general. For application to the specific case of a mono-
lithic DRO tuned by temperature, applied potential, and
pump frequency, the appropriate variables and derivatives
from Table 1 are directly substituted for the terms involv-
ing the general tuning parameter {. Evaluation of the
derivatives for the case of monolithic DRO’s made from
MgO:LiNbO, with propagation in the x direction and
with an electric field applied in the y direction is dis-
cussed in Appendix A. Temperature-dependent disper-
sion, thermal expansion, the electro-optic effect, and the
piezoelectric effect of the nonlinear-optical material are
used in the evaluation. Results of this evaluation for ex-
perimental conditions described in Section 3 are given
in Table 2.

3. EXPERIMENTAL OBSERVATIONS
AND MODELING

A. Experimental Conditions

Two monolithic DRO’s, which were described previ-
ously,'™® were used in the experimental observations.
One DRO had lower finesse and had to be pulse-pumped in
order to achieve the higher threshold power needed for
parametric oscillation. The higher-finesse DRO operated
above threshold with the available continuous pumping.
The pump source was a diode-laser-pumped nonplanar
ring oscillator,'®?® constructed of neodymium-doped
yttrium aluminum garnet (Nd'YAG) with the 1064-nm
laser output converted to 532 nm by externally resonant
second-harmonic generation.” Approximately 30 mW of
cw pump radiation was generated. The laser operated in
a single longitudinal and a single transverse mode. For
cw operation of the laser fundamental frequency stability
was typically 10 kHz over short periods of time.**** This
value was doubled at the second harmonic. Higher peak
power at similar average power was obtained by driving
the laser into relaxation oscillations by 10% amplitude
modulation of the diode-laser output at 320 kHz. Good
frequency stability and high optical quality of the pump
radiation, such as that achieved with the diode-laser-
pumped solid-state laser, are important for obtaining sta-
ble DRO performance.

Both monolithic DRO's were operated with a ring-reso-
nator configuration. They were constructed from 5% mag-
nesium-oxide-doped lithium niobate (MgO:LiNbO,).24.25
Each of these monolithic resonators was 12.5-mm long
with the crystal x axis in the long direction. A ring path in
these resonators was formed by reflections from two
multilayer dielectric coated surfaces with 10-mm radii of
curvature and a totally internally reflecting surface. The
centers of curvature of the spherical surfaces were on a line
parallel to and 180 um inside the flat totally internally
reflecting surface. A drawing of the monolithic DRO's is
shown in Fig. 8. The 532-nm pump beam was mode

Table 2. Derivatives used to Model Tuning of
MgO:LiNbO; Monolithic DRO’s*
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Fig. 8 DRO geometry used for experimental observations.

matched for collinear propagation on the segment of the
ring path parallel to the crystal x axis. The pump beam with
extraordinary polarization did not follow the closed path of
the signal and the idler waves with ordinary polarization
because of bireflection.

Metal coatings for electric-field tuning were applied
to the crystal surfaces perpendicular to the y axis. The
thickness of the crystals between the electrodes was



2.2 mm. The finesse of both DRO’s at 1.064 um was
measured with the Nd:YAG laser output directly, without
second-harmonic generation. Electric-field tuning was
used to scan the resonators through a free spectral range,
and transmission through the resonators gave a measure
of resonance width relative to the mode spacing. One
DRO had a finesse of 360, and the other had finesse of
960. The lower-finesse device had an experimentally ob-
served threshold for cw parametric oscillation of 35 mW,
and the higher-finesse DRO had a threshold of 12 mW.
The pump source could produce approximately 30 mW of
cw radiation at 532 nm. The higher-threshold OPO was
pumped by 532-nm second harmonic, which consisted of
400-nsec pulses with 230-mW peak power at a 320-kHz
repetition rate.

The output of the DRO’s was tuned by temperature
and electric field. Noncritical phase matching in MgO:
LiNbQO; was achieved for degeneracy at 107°C, and as
temperature was increased the signal and the idler wave-
lengths separated from the 1.064-um degeneracy point.
For the tuning studies the potential applied to the crystal
was repetitively ramped at fixed temperature. Output
wavelength measurements were repeated at incrementally
changed temperatures. An /10, 1-m grating monochro-
mator with a 600-line/mm grating was used for wave-
length measurement. The DRO output directed into the
monochromator consisted of a series of pulses; these
pulses resulted either from the pulse pumping or from the
mode hops produced by the ramped voltage with continu-
ous pumping. The radiation transmitted by the mono-
chromator usually consisted of a few pulses in a narrow
spectral band that could be correlated with the potential
applied to the DRO electrodes. A schematic representa-
tion of the experimental setup is shown in Fig. 9

B. Cluster Tuning

The tuning of the high-finesse DRO involved spectral
jumps back and forth between cluster curves as well as
mode hops along the cluster curves. This behavior is il-
lustrated in Fig. 10, where DRO output is displayed for a
small voltage range at a constant temperature. In this
figure output is resolved on three separate cluster curves.
The monochromator slits were opened to provide a 5-nm

monochromator

Fig. @ Schematic representation of the setup used for DRO tun-
ing measurements.

1037 nm

'-,-'I:',d".!"-‘

1043 nm

Y

1053 nm

le— a0V —

Fig. 10. Oscillograms of cw-pumped DRO output, showing simul-
taneous output on three cluster curves. The signal displayed
is that produced by a photodiode placed after a monochromator
with elits adjusted for a 5-nm bandpass. Each of the oscillo-
grams corresponds to the same portion of the ramped voltage
applied to the DRO. The change in applied potential is indicated.
The oscillograms differ only in the wavelength setting of the
monochromator, indicated for the individual traces. The output
on the central cluster dominates and is so strong that the oscillo-
scope trace does not return to the baseline.

transmission width, one sufficient to resolve the individual
clusters while transmitting a number of mode hops. The
central cluster curve with signal wavelength near 1043 nm
dominated. Two other cluster curves fit within the phase-
matching gain bandwidth, and output on these curves was
observed near 1053 and 1037 nm. Competition with the
central cluster curve, which depletes the pump wave, is
evident in the two cluster curves to either side.

Three adjustable parameters were used to fit Eqgs. (21)
and (22) to the observations. A temperature-offset cor-
rection ig used to fit the calculated phase-matching curve.
There are inaccuracies in both the absolute measurement
of temperature and in the temperature dependence of the
dispersion relationships that make this necessary. The
temperature adjustment was accomplished by shifting the
data a fraction of 1°C but could have equally well been
done by changing the parameter Ak, in Eq. (21). Another
fitting parameter is required because the optical lengths
of the DRO's are not precisely known. This fit is accom-
plished by changing the value of m, in Eq. (22) and has the
effect of adjusting the placement of the cluster curves.
The thickness of the DRO crystals is also used as a fitting
parameter. The electrodes do not completely cover the
surfaces, and fringing effects are not considered. In-
stead, it is assumed that there is a uniform electric field
in the y direction given by E, = V/¢, where V is the applied
potential and ¢ is an effective thickness. Adjusting the
thickness has the effect of changing the slopes of the clus-
ter curves and voltage-tuned phase-matching curve. Itis
interesting to note that the piezoelectric effect, in addi-
tion to the electro-optic effect, is needed to model the ob-
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Fig. 11. Observed and calculated tuning for the pulsed-pumped
DRO with finesse of 360. The open vertical bars in (a) show the
extent of tuning observed as applied potential was ramped from 0
to 1150 V at a constant temperature. The solid curves behind
the vertical bars are calculated phase-matching curves for the ex-
treme voltages. Voltage tuning for three temperatures is shown
in (b)—(d), where the bold central curves are the calculated phase-
matching curves, and the dashed curves indicate the limits of the
phase-matching bandwidth. The dotted curves are calculated
cluster curves, and the filled circles are chserved operating pointa
of the DRO. This DRO, which has only moderate finesse, exhibits
few jumpa between cluster curves as the voltage is ramped. The
data are measurements of the applied potential for a limited
sampling of output frequencies and do not represent individual
mode hops.
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Fig. 12. Observed and calculated tuning for the cw-pumped
DRO with finesse of 960. As in Fig. 11, the open bars in (a) indi-
cate the range of tuning as voltage was ramped, in this case be-
tween —1150 V and 0, and the solid curves behind the vertical
bars are the calculated phase-matching curves for the two ex-
treme voltages. Voltage tuning is shown for three temperatures
in (b)~(d). This DRO, which has higher finesse, exhibits a num-
ber of frequency jumps between three clustar curves as voltage
is tuned.



served tuning. When only the electro-optic effect is used,
the calculated voltage-tuned cluster curves are parallel to
the voltage-tuned phase-matching curve. A fourth fitting
parameter not used here is the constant m,, in Eq. (23).
Adjustment of m, o would allow for different phase shifts
at the mirror surfaces for the signal and the idler and the
possibility of different cavity lengths.* Adjustment of m,
would change the calculated position of the mode hops.

The observed and fitted tuning curves for the DRO's are
shown in Figs. 11 and 12. The theory is most easily ex-
pressed in terms of frequency. Frequency therefore is
used as the primary ordinate scale in these graphs, and
wavelength is included as a secondary scale for reference.
The temperature-tuned phase-matching curves are shown
in Figs. 11(a) and 12(a). At each temperature setting a
range of output wavelengths is obtained by voltage tun-
ing. In most cases the observed tuning ranges cover the
space between and extend slightly beyond the calculated
temperature-dependent tuning curves for the extreme
voltages. Voltage was ramped from 0 to 1150 V, and
when the crystal was reversed from 0 to —1150 V. Fig-
ures 11(b)-11(d) and 12(b)-12(d) show the voltage tuning
at selected fixed temperatures. The data are the volt-
ages at which output was observed at selected frequen-
cies. Calculated phase-matching curves, gain-bandwidth
curves, and cluster curves are shown for comparison. In
some instances the data are located in lines parallel to the
calculated cluster curves but not on the cluster curves.
This most likely is caused by inaccuracy in temperature
measurement, and coincidence could be obtained by choos-
ing a different temperature calibration for each setting.
In practice DRO tuning may provide an accurate measure-
ment of its temperature. The DRO sensitivity to tempera-
ture will become more apparent below when the details of
tuning are discussed.

Figures 11 and 12 appear to be similar in a cursory ex-
amination; however, one aspect of tuning’s dependence on
finesse is illustrated. The lower-finesse DRO, with the
tuning shown in Fig. 11, usually oscillates on the single
cluster curve nearest the phase-matching curve. Some-
times the oscillation jumps back and forth between two
cluster curves when they are nearly equally distant from
phase matching. The output of the higher-finesse DRO
with the tuning shown in Fig. 12 jumps between two or
three cluster curves. This is in agreement with theoreti-
cal predictions that show the tuning limit imposed on the
% = 960 DRO by the resonance widths; that is, the finesse
limit of tuning is reached before the mode-hop limit of
tuning for most conditions encountered.

The cluster curves are also dependent on temperature.
The data displayed in Fig. 12 are interpreted to show tem-
perature tuning at constant voltage in Fig. 13. Here the
data points are either interpolated from measurements of
cluster tuning with voltages both higher and lower than
the selected voltage or extrapolated from measurements
of the cluster curves that nearly reach the selected volt-
age. The calculated phase matching, gain bandwidth,
and cluster curves are again in reasonable agreement
with observation.

C. Axial Mode-Hop tuning
There is good agreement between observation and the cal-
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Fig. 13. Observed and calculated tuning for the cw-pumped DRO
as a function of temperature. The same tuning data that was
used in Fig. 12 is used here. A fixed voltage of —200 V was
chosen. For the cases in which oscillation on a cluster curve was
observed at voltages both higher and lower than this voltage, fre-
quencies were obtained by interpolation and are represented by
filled circles. For the cases in which cluster tuning came near
but did not reach this voltage, frequencies were obtained by ex-
trapolation and are represented by open circles. The dotted
curves are portions of the calculated temperature-dependent
cluster curves. The calculated phase-matching curve is the cen-
tral bold curve, and the dashed curves show the approximate
gain-bandwidth limits.

culated voltage change required to produce a mode hop.
Obsgervations similar to those illustrated in Fig. 10 were
performed under various conditions. The results are
shown in Fig. 14, in which AViopepaing i8 displayed as a
function of detuning from degeneracy. The calculated
line is obtained from Egs. (31) and (33). The tuning
parameter is voltage, and it is necessary to substitute V
for { in the equations and further to substitute the appro-
priate values from Table 2, and to evaluate the derivative
(dm/dw,)., as a function of signal frequency. The approxi-
mations given in Section 4 by relations (37) and (38) also
work well in the evaluation of Eq. (31).

Calculations of axial-mode-hop tuning along cluster
curves were performed for conditions that would approxi-
mate those used to produce Fig. 10. The same fitting
parameters were used as in Figs. 12 and 13. An operat-
ing temperature and center voltage were chosen to give
three cluster curves centered on phase matching at the
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Fig. 14. A Modo-hnp spacin¢ in an applied potential as a function
of detuning from degeneracy. The dots are data points and the
solid line is calculated from thecry.



observed operating frequencies. This was done by ma-
nipulation and solution of Egs. (21) and (22). Calculated
phase-matching, gain-bandwidth, and cluster curves in
this region are shown in Fig. 15(a). Calculated tuning
along the three cluster curves with the detail of mode hops
is shown in Figs. 15(b)-15(d). These tuning curves were
obtained by using Eq. (22) to calculate the cluster signal
frequency w,q, Eq. (23) to calculate the signal mode num-
ber m,g, at the cluster frequency, and Eq. (29) to calculate
the signal frequency of the oscillation. The mode-hop
frequency limits given by Eq. (34) and the finesse fre-
quency limits given by Eq. (35) are also shown.

When the oscillating signal frequency differs from the
cluster signal frequency by more than the mode-hop limit,
it i3 advantageous for the oscillation to shift to another
signal-idler resonance pair. When the oscillating fre-
quency excursion from the cluster frequency reaches the
finesse limit, the threshold for parametric oscillation is
double the value it had when the oscillation frequencies
coincided with the cluster frequencies, and the thresh-
old increases for greater excursions of the oscillation fre-
quency from the cluster frequency. Figure 15 illustrates
how cluster jumps can be interspersed with the mode hops
of a single cluster curve. For the calculation presented in
Fig. 15, the finesse limit of tuning is reached before the
mode-hop limit is reached on the central cluster curve
shown in Fig. 15(c). Parametric oscillation on the central
cluster curve usually dominates, because phase matching
is best there. When the finesse limit of the frequency
excursion from the cluster curve is reached, however, the
' parametric oscillation on the central cluster curve decays,
and it is possible to have oscillation build up on an adjacent
cluster curve before oscillation can build up on the next
mode pair of the central cluster curve. Notice that the
mode-hop spacing that is measured by the change in the
tuning variable is different for the three adjacent cluster
curves of Fig. 15(b)-15(d). Also, the relative positions of
the finesse and mode-hop limits change with detuning
from degeneracy.

These comparisons show quantitative agreement be-
tween observations and the tuning theory of Section 2.
The tuning theory describes the cluster tuning of the DRO
as well as the effects of cavity finesse on the cluster struc-
ture in the occurrence of cluster jumps. Also, the theory
ia able to predict the observed spacing in the tuning vari-
able of axial mode hops on a microscopic scale of tun-
ing. This is done with temperature-dependent dispersion,
thermal expansion, and electro-optical and piezoelectric
effects. Only three fitting parameters are used: a tem-
perature calibration, which entailed the translation of a
temperature scale by a fraction of a degree Celsius, an
adjustment of cavity length ! of less than one wavelength,
and the use of a effective crystal thickness that compen-
sated for the nonuniformity of the electric field inside the
crystal. With this agreement it is reasonable to consider
applying the theory to analysis of the DRO for optical fre-
quency synthesis. Specifically, the analysis addresses
conditions that are necessary to reproduce the coherence
of a frequency-stable pump with a small degree of tunabil-
ity at any frequency in the tuning range of the DRO.
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Fig. 15. Detailed display of calculated DRO tuning as a function
of applied potential for conditions that would produce output similar
to that shown in Fig. 10. All calculations are for a fixed
temperature of 107.540°C. Detailed calculations of mning for three
cluster curves are shown in (b)«(d). Here the DRO output frequency
is indicated by the open horizontal bars. A finesse of 960 is used..
The slope of the continuous portions of the detailed tuning curves
(b)—(d) is dependent on the relative values of finesse at the signal and
the idler frequencies, but in all cases the slope is much less than that
of the cluster curves.



4. FREQUENCY SYNTHESIS AND
TUNING-VARIA BLE TOLERANCES

Parameter tolerances and continuous frequency tuning
are topics that can be addressed with the theory pre-
sented above. Knowledge of tolerances is important for
stable DRO operation and for tuning to oscillation at
specific frequencies. Continuous frequency tuning is of
interest in many applications. Fixed-frequency operation
with resolution finer than a mode hop may be required, or
perhaps truly continuous frequency coverage may be neces-
sary. The DRO output frequencies lie within the widths
of cavity resonances. The extent of continuous tuning
depends on several factors, including frequency shifts of
the cavity modes, the spectral range over which the con-
gervation of energy condition can be satisfied while main-
taining oscillation within a selected mode pair, and the
spectral range over which higher net parametric gain is not
available on another mode pair. Multiple-parameter tun-
ing, in which two or more parameters are synchronously
changed, is required for continuous tuning over the full
free spectral range of the oscillator. Single-parameter
tuning will provide frequency coverage over small regions
that are separated by the discrete mode hops.

1t is easiest to think of tolerances for situations in which
only a single parameter is permitted to change. In prac-
tice there are advantages in dealing with parameter toler-
ances in pairs. For example, voltage and temperature
adjustments could be used to maintain stable oscillation at
a fixed frequency. It may not be possible to control tem-
perature to the precision that is required if voltage is
fixed, but the lack of adequate temperature control could
be offset by voltage control. Feedback techniques could
be used to adjust voltage in order to maintain stable oscil-
lation on a signal-idler mode pair even in the presence of
temperature fluctuations that by themselves would cause
mode hops. The change in voltage required for stable op-
eration could be used as an error signal that would in turn
be used to return the temperature to the desired value.

Simultaneous adjustment of three parameters could
also be used to tune the output frequency of the DRO. As
an example, consider a pump frequency that is ramped in
some specified way. The conditions required for stable
operation on a single signal-idler mode pair could be pro-
vided by feedback control of the potential applied for
electro-optic and piezoelectric tuning. The tolerance re-
quired for phase matching would be much less stringent
than that required for stable operation on a single signal-
idler mode pair; adequate phase matching could be main-
tained by temperature control, based on a functional
relationship that is dependent on the pump frequency
and voltage required for stable operation. With two-
parameter tuning frequency matching could be main-
tained, but it would not be possible to maintain optimum
phase matching.

A. TuningVariable Tolerances

The parameter tolerances for stable operation are deter-
mined by the more restrictive of two conditions. Mode
hops are avoided by operation within a range of adjust-
ment over which higher gain does not develop on another
signal-idler mode pair. The range of adjustment over
which oscillation can be maintained on a mode pair may

be limited to a smaller value by the resonance width or
equivalently by the DRO finesse. These tolerances are
closely related to the mode-hop spacing and spectral limits
of tuning that were discussed above, and they can be ob-
tained from detailed tuning curves such as those shown in
Fig. 15(b)-15(d) for voltage tuning. Detailed tuning
curves for temperature tuning and pump-frequency tun-
ing are shown in Figs. 16 and 17, respectively.

The conditions for the calculations displayed in Figs. 16
and 17 are the same as those used to produce Fig. 15(c).
These conditions are ¥, = ¥; = 960 for a MgO:LiNbO,
DRO of length ! = 1.25 cm, pumped at 564 THz (632 nm)
with signal frequency near 287 THz (1043 nm). Fitting
parameters used in these calculations, such as an effec-
tive thickness ¢ = 0.277 cm and a length adjustment cor-
responding to a change in m of 0.42, are the same as those
required to fit the experimental data in Figs. 12 and 13.
These characteristics are carried forward to other calcu-
lations for the purpose of providing a specific example for

comparison.
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Fig. 16. Calculated detailed tuning as a function of temperature.
For this calculation temperature is adjusted while other parame-
ters are held constant at values that correspond to a point near
the center of Fig. 15(c). Here, also, the slope of the continuous
portions of the tuning curve are dependent on the relative values
of signal and idler finesse, and this slops is small compared with
the slope of the cluster curve.
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The detailed tuning curves of Figs. 15-17 are similar in
many respects. The mode-hop and finesse limits of fre-
quency displacement from the cluster curve are indepen-
dent of the tuning parameter. In each of the figures the
slope of the continuous portion of tuning between mode
hops is much smaller than the slope of the cluster curve.
The slopes of the continuous portions of tuning are de-
pendent on the relative finesse of the signal and the idler
resonances. The case of equal finesse is shown in the cal-
culated tuning curves. The illustrated curves show that
voltage must be held within a tolerance of approximately
1 V, temperature within 0.0006°C, and pump frequency
within 7 MHz for stable operation in this example.

Analytic approximations for the parameter tolerances
for stable operation are not limited to a specific example.
The range over which a parameter can be changed with-
out causing a mode hop is obtained from the condition
Am,q = *1/2. Recall that m,, is the value m, for a point
on the associated cluster curve, and the cluster curve is
a line that gives the values of signal frequency w, and a
tuning parameter { for which Am = 0, with the other pa-
rameters held at fixed values. It follows that the tuning-
parameter tolerance is

1 am..q -1
The derivative in the above equation can be evaluated
with Eq. (33). An approximation of that equation for the
case of type-] phase matching ia given by

am.,a - — 8@0 am

X B bwn o @7)

where Say, is the mode spacing at degeneracy (@; = @;
@q = ®,/2). The difference between the idler and Lhe
signal modc spacing can also be expanded about
degeneracy by using Eqgs. (18) to obtain

Sus — B, = 280822 (@, = wo). (38)
Equation (36) and relations (37) and (38) can be combined
to give the desired approximation for the mode-hop pa-
rameter tolerance, namely,

Azm....-zaa."';f". I s = w0) a—a{”i (39)

The adjustable paramster tolerance related to cavity {i-
nesse can be obtained from the cavity- -tnp phase-
ghift sum for which the threshold is twice its

pumping
minimum value. From Eqs. (12) and (13) this phase-shift

sum is
1 1
el

Since ¢ = 2wAm, the parameter tolerance determined by
cavity finesae is

l’ﬁ(l/sl + 1/30)’

am/a{ “y

AlPintolerance ™ £

Table 3. Calculated Single-Parameter
Continuous Tuning Rates and Parameter
Tolerances for Stable Operation of
the Finesse = 980 DRO Pumped
at 563.8 THz with Signal Frequency 287.44 THz

Tuning y
Parameter 9fs.0m )
¢ Yy Al Alra
V (Voltage) 72 kHz/V +0.98 V 080V
T (Temperature) —124 MHz/°C  £0.00064°C  +0.00051°C
f» (Pump
Frequency) 0.499 Hz/Hz  +6.7 MH:z +5.4 MHz

The parameter tolerance related to mode hops, given by
relation (39), is zero at degeneracy and increases linearly
with detuning from degeneracy. In practice, however, op-
eration precisely at degeneracy was stable for tens of min-
utes with no adjustments to the DRO.® The parameter
tolerance related to cavity finesse, given by relation (41),
remains approximately constant independent of detun-
ing from degeneracy as long as finesse remains constant.
Calculated tuning-variable tolerances are given in Table 3
for the MgO:LiNbO,; DRO for the conditions used to gen-
erate Figs. 15(c), 16, and 17.

B. Single-Parameter Tuning
The cavity resonances associated with the signal wave and
the idler wave can have significantly different finesse. The
oscillating frequencies of the DRO will more closely align
with the higher-finesse cavity resonance rather than the
complementary resonance with lower finesse and greater
width. If the frequencies of the cavity resonances change,
the oscillation will follow the higher-finesse resonance
more closely, to the extent possible without a mode hop or
cluster jump. If the pump frequency changes, the fre-
quency of the wave oscillating on the higher-finesse cavity
resonance will remain more nearly constant than that of the
wave oscillating on the lower-finesse resonance. In this
sense the higher-finesse resonance pulls the frequencies of
oscillation more strongly.

It has been noted by Smnb‘ that the continuous tuning of
a DRO is relatively insensitive to tuning-parameter changes
that change the opiical length of the DRO resonator, but the
signal frequency and the idler frequency both display

_ approximately one half of the change that occurs in pump

frequency. Single parameter continuous tuning is described
by Eq. (30), which can be rewritten with m = m, + m, as

aw.,a. Sw, 80, (’ am. ’ )
q B F, +owFN K Y

In the mathematical development used here, », and w, are
used as independent variables, with »; determined by
Eq. (1). Choosing pump frequency w, as the variable
parameter { requires the substitutions

amy (am.) am,
omi | (omu) _ M
FY2RME P e

and



a_m__.(a_m_) -0
af 0wy /.,

The signal and the idler mode spacings, §w, and dw;, will
differ by only a small amount, and if ¥, and ¥; are nearly
equal, the tuning rate i8 dw,ow/dw, ™ 1/2. More gener-
ally, for differing values of finesse, the tuning rate is in
the range 0 < 3w, 0s/9w, < 1. Even though approxi-
mately half the pump frequency tuning will be reflected
in signal tuning, only a relatively small spectral range will
be covered before a mode hop is encountered. Calculated
single-parameter tuning rates for the special case of ¥, =
%,, corresponding to the DRO’s described in Section 3,
are given in Table 3. The partial derivatives needed in
this calculation were evaluated for w,o. = 287.44 THz
(1043 nm) and T, = 107.51°C instead of being taken from
Table 2. As explained in subsection 2.C.2, this procedure
is required for the evaluation of df; o,/ 0V and df; o, /97,
which involve the small difference in two quantities, but
has little effect on the other values in the table.

C. Multiple-Parameter Tuning

It is possible to extend the continuous tuning range by
synchronously adjusting two or three parameters. Ad-
justing two parameters simultaneously permits the condi-
tions Am = 0 and Am, = 0 to be maintained, but Ak will
change. Adjusting three parameters simultaneously per-
mits tuned parametric oscillation while Am, Am,, and Ak
all remain equal to zero for a specified mode pair, and
tuning is limited only by the extent that the parameters
can be changed.

Generalized tuning parameters with adjustable {, and {;
and fixed {3 are used for the discussion of two-parameter
tuning. For the specific case treated here, any permuta-
tion of voltage, temperature, and pump frequency can be
used for these three parameters. The conditions Am = 0
and Am, = 0 determine a relationship between {, and {3,
and use of this relationship permits w, and Ak to be ex-
pressed as functions of {,. These relationships can be ob-
tained by first differentiating Eqs. (21)-(23) with respect
to {1, yielding

Only a small spectral region is being considered, and it is
unnecessary to consider second partial derivatives with
respect to signal frequency. The first partial derivatives,
however, must be evaluated for the operating conditions
that are being considered. A specific case for which this
consideration is important is frequency tuning for voltage
and temperature adjustment, which again involves a small
difference of terms. Equations (42a) and (42b) are solved
for dw,/d{, and d{;/d{,. These values are substituted
into Eq. (42¢) to yield a value for dAk/d{,. Results are
calculated for three sets of tuning parameters and are
listed in Table 4. The conditions used for these calcula-
tions are the same as those used for Figs. 15-17 and
Table 3; the partial derivatives in Eqs. (42) again were
evaluated for @, o, = 287.44 THz (1043 nm) and Ty =
107.561°C.

Two of the examples given in Table 4 are briefly noted.
The voltage-temperature tuning mentioned earlier is of
interest for operation at a fixed frequency. The rate of
change of the output frequency with applied potential
when the voltage and the temperature are changed simul-
taneously in order to maintain Am = 0 and Am, = 0 is
calculated to be —7.9 kHz/V. The magnitude of this
tuning rate is about 10 times smaller than the single-
parameter voltage tuning rate given in Table 3 and sig-
nificantly smaller than the 3.5-MHz/V tuning rate of the
cavity resonance. The reduced sensitivity is important
in stable-frequency operation of the DRO. Simultaneous
pump-frequency and voltage tuning is useful for continu-
ous coverage of the spectral region between the mode hops
of single-parameter tuning. Calculated tuning curves for
this case are shown in Fig. 18. The same conditions used
in Figs. 15-17 apply again to Fig. 18. Tuning is taken to
the limits of Ak = £u/l in the figure.

T=10754C

287.44

1485.0V
287.43;1
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) 14504 V
dm (am) dw, om dmd{s 1459V
—=0=|—] Sttt 42a
afy dw,/e,diy O ¥adly (42a) 287.42 j /
‘_iL"_' =0 = .ain_'g”: a_"ll + 32._2[_!’ (42‘,) 18224V '
d{l w, d‘(l a‘l a{’ d{l 2874320 -10 0 {o 20
and PUMP FREQUENCY SHIFT (GHz)
Fig. 18. Calculated tuning for varying the voltage and the pump
dAk _ (aAk &“_M_k_‘_ﬁé{_a (42¢) frequency simultaneously 5o as to maintain Am = 0 and Am, = 0.
FTE VN T AR TR TR T ¢ The dashed line is the cluster curve of Fig. 17. Tuning limits are
the taken at the point at which Ak = 3p/! in the 1.25cm-long crystal.
Table 4. Calculated Values for Two-Parameter Tuning of a Monolithic MgO:LiNbO, DRO at
f. = 287.44 THz or A, = 1043 nm i
Fixed Parameter L | 4 -dﬂ
Adjustable Parameters ix a0, T2 7
h=fufa=V T = 107.54°C 0.510 1.47 x 107" V/Hz 2.26 x 10™* (rad/m)/Hz
G=fobs=T V=-160V 0.511 (-9.4 x 107)°C/Hz -6.7 x 10”* (rad/m)/Hz
[1=V,{s=T f, = 583.6 THz -7.9 kHz/V 6.4 x 107°Y°C/V 0.618 (rad/m)/V




Two methods of three-parameter tuning are presented.
First a method is described for achieving oscillation at a
specified frequency while satisfying the conditions Ak =
0, Am =0, and Am, = 0. The description is in mathe-
matical terms, but is analogous to what could be done
experimentally. The first step in this method is adjust-
ment of the temperature in order to achieve phase match-
ing for the specified frequency. This is just a matter of
changing the temperature to the value determined by
Eq. (21). Next the pump frequency and the temperature
are adjusted simultaneously in order to maintain the Ak =
0 phase-matching condition and to satisfy the condition
Am = 0. Numerically this is done by setting A% = 0 and
Am =0 in Egs. (21) and (22) and solving for T and w,
with V and o, held constant. Next, three parameters are
adjusted simultaneously by solving Eqs. (21)-(23) for T,
w,, and V with o, again held constant and Ak, Am, and
Am, set to zero.

In practice this mathematical procedure would be
analogous to setting temperature t{o a value calculated for
phase matching and observing the location of the cluster
curve nearest the phase-matched signal frequency. Next,
the temperature and the pump frequency are adjusted
simultaneously in order to move that cluster curve to in-
tersect the desired frequency at phase matching. At this
point oscillation is on the resonance nearest the specified
frequency. Finally the temperature, the pump frequency,
and the voltage are adjusted simultaneous in order to
bring the cavity resonance to the desired frequency while
maintaining coincidence of the signal and the idler modes
and phase matching.

The second method of three-parameter tuning concerns
a situation in which oscillation is achieved with optimum
phase matching and coincidence of the modes in satisfying
the conservation-of-energy condition. Continuous output
frequency tuning is possible over a limited range while op-
timum DRO operating conditions are maintained. One
parameter can be changed arbitrarily, but the other pa-
rameters must be changed in a prescribed manner. The
prescription for this change is again obtained by differen-
tiating Eqs. (21)-(23) and this time setting all total deriva-
tives equal to zero. The pump frequency w, is chosen as
the independent parameter, and the differentiation yields

sk, . (284) @_-+(2A_’=)+ﬂ;‘£+ﬂﬂ

dw,  \ow,/.,dw, \dwply oT dw, & dw,
(43a)

m-o_(m) d, _a_rz)+a_»:;dz+a_mﬂ,

wp  \dw,/.,dw, \dwyly T dw, &V duw,
(43b)

and

dm, _ o _dmdo,  3m, am,dT | om, dV 0

dw, = d0,dw, ow, T dw, oV duw,

Again, only the first partial derivatives, evaluated in the
region of consideration, are required. All of the partial
derivatives are determined by material characteristics
and the DRO configuration, resulting in three linear equa-
tions with three unknowns, which are solved by the usual
methods. Continuous frequency coverage can be ob-
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Fig. 19 Calculated tuning for varying the voltage, the pump fre-
quency, and the temperature simuitanecusly 80 as to maintain
Am = 0, Am, = 0, and Ak = 0.

tained with an incremental series of continuous frequency
sweeps. A calculation of tuning in this manner is shown
in Fig. 19. The extent of tuning for the individual sec-
tions will be limited by the range of parameter adjust-
ment. For example, there may be a maximum voltage that
can be applied, or the extent of pump frequency tuning
may be limited. A limit of +1000 V was used in Fig. 19.

The calculations of two- and three-parameter tuning
show that a DRO can be tuned to any frequency in its
operating range® with reasonable adjustment of the tuning
parameters. Continuous tuning is possible over spectral
ranges of approximately the extent of a free spectral
range. Complete coverage of larger spectral regions has
to be done by scanning a series of smaller regions. The
control of individual parameters, particularly tempera-
ture, requires difficult tolerances. The control problem
can be shifted to another, more easily controlled parame-
ter, such as voltage with multiple-parameter control of the
DRO. The degree of correction required on the second
parameter can then be used as an error signal for control
of the first parameter. Fortunately the oscillating fre-
quencies of the monolithic DRO, exclusive of mode hops,
are relatively insensitive to voltage and temperature
changes. If mode hops and cluster jumps are avoided, the
frequency change of the DRO is approximately one half

the frequency change of the pump.

5. SUMMARY

The theory that is used to model tuning of the DRO is
verified at many stages. The first-order threshold ap-
proximation agrees well with more general calculations in
the limit of low cavity loss. The theory accurately models
observed cluster curves for two monolithic MgO:LiNbO,
DRO’s. The modeling includes temperature-dependent
dispersion, thermal expansion, and the electro-optic and
piezoelectric effects in the nonlinear material. The ef-
fect of DRO cavity finesse on the fine details of tuning
gives a reasonable explanation of observed cluster jumps.
Further substantiation of the model in the fine details of
tuning is provided by the accurate prediction of the axial-
mode-hop rate for tuning-parameter change.

An understanding of DRO tuning is important for con-
trolled stable operation, Continuous tuning rates were
calculated for single- and multiple-parameter adjustment.



Tolerances for stable operation were estimated. The re-
sults of these calculations will be useful for DRO de-
sign optimization. Multiple-parameter tuning, including
pump-frequency adjustment, will be necessary for reach-
ing any arbitrary frequency in the OPO operating range.
With appropriate control the DRO will be able to produce
stable outputs with a frequency stability as good as that
available in the pump source.

The DRO should find application in the generation of
stable fixed-frequency radiation. Incremental tuning in
controlled mode hops or cluster jumpa will have applica-
tions in spectroscopy and differential absorption lidar
(light detection and ranging). Slow, high-resolution tun-
ing will be possible over limited frequency ranges for spec-
troscopic applications.

The theory presented here could easily be extended
to DRO configurations other than monolithic devices.
Other degrees of freedom, such as direct length control in
a discrete-component DRO, would provide greater versatil-
ity in operation. Independent control of signal and idler
cavity lengths would be useful in providing greatly ex-
tended ranges of continuous tuning. The development
of stable DRO operation is now possible through the com-
bination of improved nonlinear-optical materials and
frequency-stable laser development, such as in diode-
pumped solid-state lasers. Optical parametric oscillators
again appear to be on the threshold of reaching a potential
that was first understood twenty-five years ago.

APPENDIX A. MATERIAL PROPERTIES OF
MgO:LiNbO; RELATED TO DRO TUNING

A. Temperature-Dependent Dispersion

Edwards and Lawrence?® developed temperature-depen-
dent dispersion equations for congruently grown LiNbO;,
based on data reported by Nelson and Mikulyak? and
Smith ez al.?® They use dispersion equations of the form

A; + B\F
2 = -— 2
n A‘+A’—(,—B,F)’+B'F A, (Al)
where
F = (T - To)(T + Ty + 548), (A2)

A is wavelength in micrometers, and T is temperature in
degrees Celsius. Coefficients for congruent LiNbO; are
as follows:

Ordinary Extraordinary
A, 4.9048 4.5820
Ay 0.11776 0.09921
As 0.21802 0.21090
A, 0.027153 0.021940
B, 2.2314 x 107 5.2716 x 107
B, -2.9671 x 10°° -4.9143 x 107
Bs 2.1429 x 107* 2.2971 x 10~7
To 24.5 24.5

The material used in this work is not congruent
LiNbOs; rather, it is 5%MgO:LiNbO,. There is little re-
fractometric data available thie material. To obtain an
approximate set of equations for 5%MgO:LiNbO,, the ex-
traordinary index was adjusted by changing Az from
4.5820 to 4.55207. This has the effect of increasing the
calculated noncritical phase-matching temperature for
1064-532-nm second-harmonic generation from —19.4 to
107.04°C. The measured value for the MgO-doped mate-
rial is 107°C.*® This modification to the congruent dis-
persion equations accurately reproduces the observed
tuning curve for a singly resonant OPQ that was tuned be-
tween 0.85 and 1.48 um by varying temperature between
122 and 190°C.*® This modification also predicts para-
metric florescence pumped at 514.5 and 488 nm when the
crystal is tuned between 100 and 450°C (Table Al).

B. Electro-Optic Effect
Electro-optical, piezoelectric, and thermal expansion
~ characterizations of LiNbO, are reviewed by Riiuber.”
A somewhat more extensive tabulation of electro-optical
coefficient measurements is given by Yariv and Yeh.%
Their treatment of the electro-optical effect is followed
here. The index ellipeoid in a principle coordinate system
is given by
2

|a

1 L2
+ L+, (A3)
x ny ny

|
»

When an electric field is applied, the electro-optical effect
is described by the modified index ellipsoid

1 1 1
(;:,' + ruE.)x’ + ('n? + r,.E.)_y’ + (;‘7 + ruE.)z’
+ 2ruEvyz + 2raEixz + 2raEvxy =1, (A4)
where B '

Table Al. Comparison of Measured and Calculated Values for Parametric Fluorescence in MgO:LiNbO,

514.5-nm Pump Wavelength 488-nm Pump Wavelength
Experimental Obe. Fluorescence Obs. Flucrescence N
Temperature Setting Wavelength Calc. Temperature Wavelength Calc. Temperature
(*C) (nm) (°C) (nm) (*C)
148 7771 146.70 873.3 143.17
198 741.2 196.21 653.1 194.93
248 710.8 245.26 6834.5 245.18
298 884.5 293.38 617.3 294.12
318 674.8 312.52
348 660.8 341.50 601.3 341.86
398 639.2 389.31 585.7 390.38
448 619.2 436.60
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For point group 3m, to which LiNbO, belongs, the fol-
lowing relationships apply: n. = n, = n,, n, = n,, and

-~

0 =T f'u-
0 Tz T
0 0 T33
tw=| o L, ol (45)
Ty 0 0
_—rgg 0 0 A

There are only four independent electro-optical coeffi-
cients. We consider only application of an electric field
along the y axis (E = E,), which further simplifies the
index ellipsoid to

1 . 1 . 2 B
T raE,|x* + = + rpkEly* + o3 +2ruE,yz =1.
(A6)

The presence of the y-z cross term shows that the electro-
optical effect results in a slight rotation of the principal
axes. This is a small effect that accounts for less than 1%
of the refractive-index change even at the highest fields
that are considered here; therefore this rotation is ig-
nored. For propagation in the x direction we have

1 -3 JrakE
n, =~ (F + r,,E,) ~-n, - 5—-’2"—1 (AT)

and
n,~n,.

Yariv and Yeh™ list three values for ry of LiNbO,, mea-
sured with a low-frequency applied electric field for vari-
ous optical wavelengtha:

r2(633 nm) = 6.8 x 107" m/V,
r3(1.15 um) = 54 x 1072 m/V,
ru(3.39 p.m) =31 x 107 m/V.

These values suggest that we use ryy = 55 x 107 m/V
near the wavelength 1.06 um, the wavelength region at
which our 5%Mg0:LiNbO; DRO was operated. The value
6.8 x 1071 m/V is from a measurement reported in
1967.2 Note that this measurement was made even be-
fore the growth of congruent LiNbO, was reported.™*
We are working with an still slightly different material
5%MgO:LiNbO,,2*** and caution is required in applying
these values.

C. Thermal Expansion

Therma! expangion meagurements to second order in tem-
perature for LiNbO, are reported by Kim and Smith.*
They express the fractional change of length with the
quadratic function

# = T = Ta) + BT - Tal, (AB)

where [ is length, Al is change in length, T is temperature
in degrees Celsius and Tz = 25°C is a reference tempera-
ture. The DRO length is measured along the crystal x
axis. One set of coefficients,

ay = (1.564 x 107%°C™!
and
Bu = (53 x 107%°C"?,

apply to expansion in the x-y plane, and a second set ap-
plies to expansion in the z direction. The spread in the
measurements reported by Kim and Smith suggests an ac-
curacy of ~10% in the two coefficients.

D. Piezoelectric Effect
The direct piezoelectric effect describes the electric polar-
ization P that results when a streas T is applied to a mate-
rial by the relationship

P= d(fl Tja ) (A9)

where diu are the piezoelectric moduli. The converse
piezoelectric effect describes the strain S that results
when an electric field is applied to a piezoelectric material
by the relationship®

Sﬁ = du.Eg . (AIO)

Summation of the repeated indices is implied in both
of the above equations, and the moduli di are the same
in both equations. The elongation of the DRO cavity is
given by Sy, the x component of the change of a vector
that lies in the x direction. For these measurements an
electric field is applied in the y direction, E,, and the
modulus dy,; is required for the calculation of strain. The
symmetry of the stress tensor permits the use of a con-
tracted subscript notation in which the modulus da,; is ex-
pressed as dy,. The 3m symmetry of the lithium niobate
crystal reduces the number of independent moduli to four.
The reduced matrix of piezoelectric moduli for the point
group 3m is

0 0 0 0 diy -2dn
(dj..) = —dn d” 0 du 0 0
dy du duw 0 O 0

From the relationships between the moduli, it follows that
strain is given by
Su = dnlEz = dnEz = —daE,. (A12)

The value of the piezoelectric modulus reported by Smith
and Welsh,® dys = (2.08 x 10°"") C/N, is used. They
identify the LiNbO,, which they used as commercially
grown, with a Curie point of 1165°C. Sound-propagation
measurements were used to determine the piezoelec-
tric moduli.

The derivatives used in Eqs. (21)—(23) are expanded in
Egs. (18) and Table 1. Evaluation for the experimental
conditions described in Section 3 with the material prop-
erties described above is given in Table 2. Derivatives
involving the electro-optic and the piezoelectric effects

(A11)



are given with respect to the voltage applied to the elec-
trodes on the crystal surfaces perpendicular to the y axis.
An effective crystal thickness between the electrodes, ¢, is
used, and the derivatives are given by

Ak
B+ an) 2 (A13)
3 l
Fm\; = ";J[(n.w. + nwi)da + (wn,* + w‘nia)%}’
(A14)
and
a_’nz_ -_l“( das + Sr_u.). Al5
W e\ T Oy A1)
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The tuning properties of doubly resonant oscillation in
waveguide OPO's have been observed by Suche and
Sohler.3% There are many similarities between the tuning
properties described here and those reported for the
waveguide cavities. Piskarskas et al.*? have reported
cluster effects in the output of DRO's synchronously
pumped by cw mode-locked laser output. Wong*! has
proposed the use of DRO's for optical frequency synthesis.
The increased photoconductivity and the trapping of
charges in MgO:LiNbO, may pose some problems in the
use of dc electric fields with that material.®
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